Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 309(4): L369-77, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26092998

RESUMO

Animal models demonstrate that exposure to supraphysiological oxygen during the neonatal period compromises both lung and pulmonary vascular development, resulting in a phenotype comparable to bronchopulmonary dysplasia (BPD). Our prior work in murine models identified postnatal maturation of antioxidant enzyme capacities as well as developmental regulation of mitochondrial oxidative stress in hyperoxia. We hypothesize that consequences of hyperoxia may also be developmentally regulated and mitochondrial reactive oxygen species (ROS) dependent. To determine whether age of exposure impacts the effect of hyperoxia, neonatal mice were placed in 75% oxygen for 72 h at either postnatal day 0 (early postnatal) or day 4 (late postnatal). Mice exposed to early, but not late, postnatal hyperoxia demonstrated decreased alveolarization and septation, increased muscularization of resistance pulmonary arteries, and right ventricular hypertrophy (RVH) compared with normoxic controls. Treatment with a mitochondria-specific antioxidant, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mitoTEMPO), during early postnatal hyperoxia protected against compromised alveolarization and RVH. In addition, early, but not late, postnatal hyperoxia resulted in induction of NOX1 expression that was mitochondrial ROS dependent. Because early, but not late, exposure resulted in compromised lung and cardiovascular development, we conclude that the consequences of hyperoxia are developmentally regulated and decrease with age. Attenuated disease in mitoTEMPO-treated mice implicates mitochondrial ROS in the pathophysiology of neonatal hyperoxic lung injury, with potential for amplification of ROS signaling through NOX1 induction. Furthermore, it suggests a potential role for targeted antioxidant therapy in the prevention or treatment of BPD.


Assuntos
Displasia Broncopulmonar/enzimologia , Hiperóxia/enzimologia , Animais , Indução Enzimática , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Pulmão/enzimologia , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 308(12): H1575-82, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862831

RESUMO

Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 25-35% of premature infants with significant bronchopulmonary dysplasia (BPD), increasing morbidity and mortality. We sought to determine the role of phosphodiesterase 5 (PDE5) in the right ventricle (RV) and left ventricle (LV) in a hyperoxia-induced neonatal mouse model of PH and RVH. After birth, C57BL/6 mice were placed in room air (RA) or 75% O2 (CH) for 14 days to induce PH and RVH. Mice were euthanized at 14 days or recovered in RA for 14 days or 42 days prior to euthanasia at 28 or 56 days of age. Some pups received sildenafil or vehicle (3 mg·kg(-1)·dose(-1) sc) every other day from P0. RVH was assessed by Fulton's index [RV wt/(LV + septum) wt]. PDE5 protein expression was analyzed via Western blot, PDE5 activity was measured by commercially available assay, and cGMP was measured by enzyme-linked immunoassay. Hyperoxia induced RVH in mice after 14 days, and RVH did not resolve until 56 days of age. Hyperoxia increased PDE5 expression and activity in RV, but not LV + S, after 14 days. PDE5 expression normalized by 28 days of age, but PDE5 activity did not normalize until 56 days of age. Sildenafil given during hyperoxia prevented RVH, decreased RV PDE5 activity, and increased RV cGMP levels. Mice with cardiac-specific overexpression of PDE5 had increased RVH in RA. These findings suggest normal RV PDE5 function is disrupted by hyperoxia, and elevated PDE5 contributes to RVH and remodeling. Therefore, in addition to impacting the pulmonary vasculature, sildenafil also targets PDE5 in the neonatal mouse RV and decreases RVH.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Ventrículos do Coração/metabolismo , Hiperóxia/complicações , Hipertensão Pulmonar/etiologia , Hipertrofia Ventricular Direita/etiologia , Sistemas do Segundo Mensageiro , Função Ventricular Direita , Remodelação Ventricular , Animais , Animais Recém-Nascidos , Anti-Hipertensivos/farmacologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Modelos Animais de Doenças , Regulação para Baixo , Ventrículos do Coração/fisiopatologia , Hiperóxia/tratamento farmacológico , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Purinas/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Citrato de Sildenafila , Sulfonamidas/farmacologia , Fatores de Tempo , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
3.
Invest Ophthalmol Vis Sci ; 55(3): 1493-501, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24519428

RESUMO

PURPOSE: We sought to determine the effect of sildenafil on retinal vascular changes in a mouse model of oxygen-induced retinopathy (OIR). METHODS: Vascular defects in OIR mice were quantified by measuring vaso-obliteration at postnatal days 12 and 17 (P12 and P17) and neovascularization at P17 to compare sildenafil-treated to dextrose-treated OIR mice. Retinal HIF1α protein expression was quantified by Western blotting and normalized to that of ß-actin. Right ventricular hypertrophy was measured by Fulton's index as a surrogate for hyperoxia-induced pulmonary hypertension. RESULTS: At P12, OIR mice treated with sildenafil demonstrated a 24% reduction in vaso-obliteration (P < 0.05), whereas at P17, treated animals showed a 50% reduction in neovascularization (P < 0.05) compared to dextrose-treated controls. Sildenafil-treated OIR mice had stabilization of retinal HIF1α at P12, immediately after hyperoxia. At P17, sildenafil-treated OIR mice had decreased HIF1α relative to untreated mice. OIR mice developed right ventricle hypertrophy that was significant compared to that in room air controls, which was abrogated by sildenafil. CONCLUSIONS: Sildenafil treatment significantly decreased retinal vaso-obliteration and neovascularization in a mouse OIR model. These effects are likely due to sildenafil-induced HIF1α stabilization during hyperoxia exposure. Furthermore, we confirm disease overlap by showing that OIR mice also develop hyperoxia-induced right ventricular hypertrophy, which is prevented by sildenafil. This study is a first step toward delineating a potential therapeutic role for sildenafil in OIR and further suggests that there may be common pathophysiologic mechanisms underlying hyperoxia-induced retinal and pulmonary vascular disease.


Assuntos
Piperazinas/farmacologia , Neovascularização Retiniana/tratamento farmacológico , Vasos Retinianos/fisiopatologia , Retinopatia da Prematuridade/complicações , Sulfonas/farmacologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Purinas/farmacologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/patologia , Citrato de Sildenafila , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/farmacologia
4.
Am J Respir Cell Mol Biol ; 50(2): 369-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24032519

RESUMO

Pulmonary hypertension (PH) occurs in 25 to 35% of premature infants with significant bronchopulmonary dysplasia (BPD). Neonatal mice exposed to 14 days of hyperoxia develop BPD-like lung injury and PH. To determinne the impact of hyperoxia on pulmonary artery (PA) cyclic guanosine monophosphate (cGMP) signaling in a murine model of lung injury and PH, neonatal C57BL/6 mice were placed in room air, 75% O2 for 14 days (chronic hyperoxia [CH]) or 75% O2 for 24 hours, followed by 13 days of room air (acute hyperoxia with recovery [AHR]) with or without sildenafil. At 14 days, mean alveolar area, PA medial wall thickness (MWT), right ventricular hypertrophy (RVH), and vessel density were assessed. PA protein was analyzed for cGMP, soluble guanylate cyclase, and PDE5 activity. CH and AHR mice had RVH, but only CH mice had increased alveolar area and MWT and decreased vessel density. In CH and AHR PAs, soluble guanylate cyclase activity was decreased, and PDE5 activity was increased. In CH mice, sildenafil attenuated MWT and RVH but did not improve mean alveolar area or vessel density. In CH and AHR PAs, sildenafil decreased PDE5 activity and increased cGMP. Our results indicate that prolonged hyperoxia leads to lung injury, PH, RVH, and disrupted PA cGMP signaling. Furthermore, 24 hours of hyperoxia causes RVH and disrupted PA cGMP signaling that persists for 13 days. Sildenafil reduced RVH and restored vascular cGMP signaling but did not attenuate lung injury. Thus, hyperoxia can rapidly disrupt PA cGMP signaling in vivo with sustained effects, and concurrent sildenafil therapy can be protective.


Assuntos
Guanosina Monofosfato/metabolismo , Hiperóxia/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Piperazinas/farmacologia , Artéria Pulmonar/metabolismo , Transdução de Sinais , Sulfonas/farmacologia , Animais , GMP Cíclico/metabolismo , Hiperóxia/complicações , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Artéria Pulmonar/patologia , Purinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Citrato de Sildenafila
5.
Free Radic Biol Med ; 61: 51-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23499839

RESUMO

Exposure of newborn mice to high inspired oxygen elicits a distinct phenotype of compromised alveolar and vascular development, although lethality during long-term exposure is lower in newborns compared to adults. As the effects of hyperoxia are mediated by excessive reactive oxygen species (ROS) generation, we hypothesized that newborn mice may exhibit enhanced expression of antioxidant defenses or attenuated ROS generation compared with adults. We measured subcellular oxidant responses to acute hyperoxia in lung slices and alveolar epithelial cells at varying time points during postnatal murine lung development. Oxidant stress was assessed using RoGFP, a ratiometric protein thiol redox sensor, targeted to the cytosol or the mitochondrial matrix. In contrast to newborn resistance to oxygen-induced mortality, cells of lung slices from younger mice demonstrated exaggerated mitochondrial matrix oxidant stress compared to adults, whereas oxidant stress responses in the cytosol were absent. Cell death in lung slices from newborn mice exposed to 48h of hyperoxia was also greater than for adults. Consistent with these findings, expression of antioxidant enzymes in newborn lungs was lower than in adults, and induction of antioxidant levels and activity during 24h of in vivo exposure was absent. However, expression of the reactive oxygen species-generating enzyme NADPH oxidase 1 was increased with hyperoxic exposure in the young but not the adult lung. Collectively, these results suggest that the greater lethality in adult animals may be more likely attributed to processes such as inflammation than to differences in antioxidant defenses. Therapies for neonatal and adult oxidative lung injury should therefore consider and address developmental differences in oxidative stress responses.


Assuntos
Hiperóxia/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , Fatores Etários , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
6.
Int J Mol Sci ; 14(2): 4334-48, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23429274

RESUMO

In the pulmonary vasculature, mechanical forces such as cyclic stretch induce changes in vascular signaling, tone and remodeling. Nitric oxide is a potent regulator of soluble guanylate cyclase (sGC), which drives cGMP production, causing vasorelaxation. Pulmonary artery smooth muscle cells (PASMCs) express inducible nitric oxide synthase (iNOS), and while iNOS expression increases during late gestation, little is known about how cyclic stretch impacts this pathway. In this study, PASMC were subjected to cyclic stretch of 20% amplitude and frequency of 1 Hz for 24 h and compared to control cells maintained under static conditions. Cyclic stretch significantly increased cytosolic oxidative stress as compared to static cells (62.9 ± 5.9% vs. 33.3 ± 5.7% maximal oxidation), as measured by the intracellular redox sensor roGFP. Cyclic stretch also increased sGCß protein expression (2.5 ± 0.9-fold), sGC activity (1.5 ± 0.2-fold) and cGMP levels (1.8 ± 0.2-fold), as well as iNOS mRNA and protein expression (3.0 ± 0.9 and 2.6 ± 0.7-fold, respectively) relative to control cells. An antioxidant, recombinant human superoxide dismutase (rhSOD), significantly decreased stretch-induced cytosolic oxidative stress, but did not block stretch-induced sGC activity. Inhibition of iNOS with 1400 W or an iNOS-specific siRNA inhibited stretch-induced sGC activity by 30% and 68% respectively vs. static controls. In conclusion, cyclic stretch increases sGC expression and activity in an iNOS-dependent manner in PASMC from fetal lambs. The mechanism that produces iNOS and sGC upregulation is not yet known, but we speculate these effects represent an early compensatory mechanism to counteract the effects of stretch-induced oxidative stress. A better understanding of the interplay between these two distinct pathways could provide key insights into future avenues to treat infants with pulmonary hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA