Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Med Phys ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828894

RESUMO

BACKGROUND: Previous study proposed a method to measure linear energy transfer (LET) at specific points using the quenching magnitude of thin film solar cells. This study was conducted to propose a more advanced method for measuring the LET distribution. PURPOSE: This study focuses on evaluating the feasibility of estimating the proton LET distribution in proton therapy. The feasibility of measuring the proton LET and dose distribution simultaneously using a single-channel configuration comprising two solar cells with distinct quenching constants is investigated with the objective of paving the way for enhanced proton therapy dosimetry. METHODS: Two solar cells with different quenching constants were used to estimate the proton LET distribution. Detector characteristics (e.g., dose linearity and dose-rate dependency) of the solar cells were evaluated to assess their suitability for dosimetry applications. First, using a reference beam condition, the quenching constants of the two solar cells were determined according to the modified Birks equation. The signal ratios of the two solar cells were then evaluated according to proton LET in relation to the estimated quenching constants. The proton LET distributions of six test beams were obtained by measuring the signal ratios of the two solar cells at each depth, and the ratios were evaluated by comparing them with those calculated by Monte Carlo simulation. RESULTS: The detector characterization of the two solar cells including dose linearity and dose-rate dependence affirmed their suitability for use in dosimetry applications. The maximum difference between the LET measured using the two solar cells and that calculated by Monte Carlo simulation was 2.34 keV/µm. In the case of the dose distribution measured using the method proposed in this study, the maximum difference between range measured using the proposed method and that measured using a multilayered ionization chamber was 0.7 mm. The expected accuracy of simultaneous LET and dose distribution measurement using the method proposed in this study were estimated to be 3.82%. The signal ratios of the two solar cells, which are related to quenching constants, demonstrated the feasibility of measuring LET and dose distribution simultaneously. CONCLUSION: The feasibility of measuring proton LET and dose distribution simultaneously using two solar cells with different quenching constants was demonstrated. Although the method proposed in this study was evaluated using a single channel by varying the measuring depth, the results suggest that the proton LET and dose distribution can be simultaneously measured if the detector is configured in a multichannel form. We believe that the results presented in this study provide the envisioned transition to a multichannel configuration, with the promise of substantially advancing proton therapy's accuracy and efficacy in cancer treatment.

2.
Med Phys ; 51(3): 1985-1996, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37722712

RESUMO

BACKGROUND: In proton therapy, a highly steep distal dose penumbra can be utilized for dose conformity, given the Bragg peak characteristic of protons. However, the location of the Bragg peak in patients (i.e., the beam range) is very sensitive to range uncertainty. Even a small shift of beam range can produce a significant variation of delivered dose to tumor and normal tissues, thus degrading treatment quality and threatening patient safety. This range uncertainty issue, therefore, is one of the important aspects to be managed in proton therapy. PURPOSE: For better management of range uncertainty, range verification has been widely studied, and prompt gamma imaging (PGI) is considered one of the promising methods in that effort. In this context, a PGI system named the gamma electron vertex imaging (GEVI) system was developed and recently upgraded for application to pencil-beam scanning (PBS) proton therapy. Here, we report the first experimental results using the therapeutic spot scanning proton beams. METHODS: A homogeneous slab phantom and an anthropomorphic phantom were employed. Spherical and cubic planning target volumes (PTVs) were defined. Various range shift scenarios were introduced. Prompt gamma (PG) measurement was synchronized with beam irradiation. The measured PG distributions were aggregated to improve the PG statistics. The range shift was estimated based on the relative change of the centroid in the measured PG distribution. The estimated range shifts were analyzed by range shift mapping, confidence interval (CI) estimation, and statistical hypothesis testing. RESULTS: The range shift mapping results showed an obvious measured range shift tendency following the true shift values. However, some fluctuations were found for spots that had still-low PG statistics after spot aggregation. The 99% CI distributions showed clearly distributed range shift measurement data. The overall accuracy and precision for all investigated scenarios were 0.36 and 0.20 mm, respectively. The results of one-sample t-tests confirmed that every shift scenario could be observed up to 1 mm of shift. The ANOVA results proved that the measured range shift data could be discriminated from one another, except for 16 (of 138) comparison cases having 1-2 mm shift differences. CONCLUSIONS: This study demonstrated the feasibility of the GEVI system for measurement of range shift in spot scanning proton therapy. Our experimental results showed that the proton beam can be measured up to 1 mm of range shift with high accuracy and precision. We believe that the GEVI system is one of the most promising PGI systems for in vivo range verification. Further research for application to more various cases and patient treatments is planned.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Elétrons , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Diagnóstico por Imagem , Imagens de Fantasmas , Dosagem Radioterapêutica
3.
Cancers (Basel) ; 15(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37444573

RESUMO

(1) In this study, we developed a deep learning (DL) model that can be used to predict late bladder toxicity. (2) We collected data obtained from 281 uterine cervical cancer patients who underwent definitive radiation therapy. The DL model was trained using 16 features, including patient, tumor, treatment, and dose parameters, and its performance was compared with that of a multivariable logistic regression model using the following metrics: accuracy, prediction, recall, F1-score, and area under the receiver operating characteristic curve (AUROC). In addition, permutation feature importance was calculated to interpret the DL model for each feature, and the lightweight DL model was designed to focus on the top five important features. (3) The DL model outperformed the multivariable logistic regression model on our dataset. It achieved an F1-score of 0.76 and an AUROC of 0.81, while the corresponding values for the multivariable logistic regression were 0.14 and 0.43, respectively. The DL model identified the doses for the most exposed 2 cc volume of the bladder (BD2cc) as the most important feature, followed by BD5cc and the ICRU bladder point. In the case of the lightweight DL model, the F-score and AUROC were 0.90 and 0.91, respectively. (4) The DL models exhibited superior performance in predicting late bladder toxicity compared with the statistical method. Through the interpretation of the model, it further emphasized its potential for improving patient outcomes and minimizing treatment-related complications with a high level of reliability.

4.
J Craniofac Surg ; 34(4): 1340-1342, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36882913

RESUMO

Medial epicanthoplasty is a crucial component in Asian cosmetic eyelid surgery. Conventional surgical methods have mandated wide undermining for the purpose of sufficient release. However, excessive undermining may result in hypertrophic scar or webbing deformities. To minimize undesirable results, the authors are proposing a novel approach. From March 2010 to December 2017, a triangular resection epicanthoplasty was performed in 421 Asian patients. The authors' procedure consists of triangular skin resection, the release of orbicularis oculi muscle and upper half medial epicanthal tendon, and dog ear correction. No complication regarding scarring or webbing was reported. The revision was performed in 18 cases where the patients wanted additional correction. The triangular resection epicanthoplasty offers both optimal results and minimal scar with relative simplicity.


Assuntos
Blefaroplastia , Cicatriz Hipertrófica , Humanos , Blefaroplastia/métodos , Cicatriz Hipertrófica/prevenção & controle , Cicatriz Hipertrófica/cirurgia , Povo Asiático , Pálpebras/cirurgia , Músculos Faciais/cirurgia , Resultado do Tratamento
5.
Med Phys ; 50(4): 2402-2416, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36583513

RESUMO

PURPOSE: Various dosimeters have been proposed for skin dosimetry in electron radiotherapy. However, one main drawback of these skin dosimeters is their lack of flexibility, which could make accurate dose measurements challenging due to air gaps between a curved patient surface and dosimeter. Therefore, the purpose of this study is to suggest a novel flexible skin dosimeter based on a thin-film copper indium gallium selenide (CIGS) solar cell, and to evaluate its dosimetric characteristics. METHODS: The CIGS solar cell dosimeter consisted of (a) a customized thin-film CIGS solar cell and (b) a data acquisition (DAQ) system. The CIGS solar cell with a thickness of 0.33 mm was customized to a size of 10 × 10 mm2 . This customized solar cell plays a role in converting therapeutic electron radiation into electrical signals. The DAQ system was composed of a voltage amplifier with a gain of 1000, a voltage input module, a DAQ chassis, and an in-house software. This system converted the electrical analog signals (from solar cell) to digital signals with a sampling rate of ≤50 kHz and then quantified/visualized the digital signals in real time. We quantified the linearity/ sampling rate effect/dose rate dependence/energy dependence/field size output factor/reproducibility/curvature/bending recoverability/angular dependence of the CIGS solar cell dosimeter in therapeutic electron beams. To evaluate clinical feasibility, we measured the skin point doses by attaching the CIGS solar cell to an anthropomorphic phantom surface (for forehead, mouth, and thorax). The CIGS-measured doses were compared with calculated doses (by treatment planning system) and measured doses (by optically stimulated luminescent dosimeter). RESULTS: The normalized signals of the solar cell dosimeter increased linearly as the delivered dose increased. The gradient of the linearly fitted line was 1.00 with an R-square of 0.9999. The sampling rates (2, 10, and 50 kHz) of the solar cell dosimeter showed good performance even at low doses (<50 cGy). The solar cell dosimeter exhibited dose rate independence within 1% and energy independence within 3% error margins. The signals of the solar cell dosimeter were similar (<1%) when penetrating the same side of the CIGS cell regardless of the rotation angle of the solar cell. The field size output factor measured by the solar cell dosimeter was comparable to that measured by the ion chamber. The solar cell signals were similar between the baseline (week 1) and the last time point (week 4). Our detector showed curvature independence within 1.8% (curvatures of <0.10 mm- ) and bending recovery (curvature of 0.10 mm-1 ). The differences between measured doses (CIGS solar cell dosimeter vs. optically stimulated luminescent dosimeter) were 7.1%, 9.6%, and 1.0% for forehead, mouth, and thorax, respectively. CONCLUSION: We present the construction of a flexible skin dosimeter based on a CIGS solar cell. Our findings demonstrate that the CIGS solar cell has a potential to be a novel flexible skin dosimeter for electron radiotherapy. Moreover, this dosimeter is manufactured with low cost and can be easily customized to various size/shape, which represents advantages over other dosimeters.


Assuntos
Cobre , Dosímetros de Radiação , Humanos , Índio , Elétrons , Reprodutibilidade dos Testes , Radiometria
6.
Med Phys ; 50(2): 1194-1204, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36135795

RESUMO

PURPOSE: The amount of luminescent light detected in a scintillator is reduced with increased proton linear energy transfer (LET) despite receiving the same proton dose, through a phenomenon called quenching. This study evaluated the ability of a solar cell coated with scintillating powder (SC-SP) to measure therapeutic proton LET by measuring the quenching effect of the scintillating powder using a solar cell while simultaneously measuring the dose of the proton beam. METHODS: SC-SP was composed of a flexible thin film solar cell and scintillating powder. The LET and dose of the pristine Bragg peak in the 14 cm range were calculated using a validated Monte Carlo model of a double scattering proton beam nozzle. The SC-SP was evaluated by measuring the proton beam under the same conditions at specific depths using SC-SP and Markus chamber. Finally, the 10 and 20 cm range pristine Bragg peaks and 5 cm spread-out Bragg peak (SOBP) in the 14 cm range were measured using the SC-SP and the Markus chamber. LETs measured using the SC-SP were compared with those calculated using Monte Carlo simulations. RESULTS: The quenching factors of the SC-SP and solar cell alone, which were slopes of linear fit obtained from quenching correction factors according to LET, were 0.027 and 0.070 µm/keV (R2 : 0.974 and 0.975). For pristine Bragg peaks in the 10 and 20 cm ranges, the maximum differences between LETs measured using the SC-SP and calculated using Monte Carlo simulations were 0.5 keV/µm (15.7%) and 1.2 keV/µm (12.0%), respectively. For a 5 cm SOBP proton beam, the LET measured using the SC-SP and calculated using Monte Carlo simulations differed by up to 1.9 keV/µm (18.7%). CONCLUSIONS: Comparisons of LETs for pristine Bragg peaks and SOBP between measured using the SC-SP and calculated using Monte Carlo simulations indicated that the solar cell-based system could simultaneously measure both LET and dose in real-time and is cost-effective.


Assuntos
Terapia com Prótons , Prótons , Pós , Transferência Linear de Energia , Método de Monte Carlo
7.
Med Phys ; 50(1): 557-569, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35993665

RESUMO

PURPOSE: A real-time solar cell based in vivo dosimetry system (SC-IVD) was developed using a flexible thin film solar cell and scintillating powder. The present study evaluated the clinical feasibility of the SC-IVD in electron beam therapy. METHODS: A thin film solar cell was coated with 100 mg of scintillating powder using an optical adhesive to enhance the sensitivity of the SC-IVD. Calibration factors were obtained by dividing the dose, measured at a reference depth for 6-20 MeV electron beam energy, by the signal obtained using the SC-IVD. Dosimetric characteristics of SC-IVDs containing variable quantities of scintillating powder (0-500 mg) were evaluated, including energy, dose rate, and beam angle dependencies, as well as dose linearity. To determine the extent to which the SC-IVD affected the dose to the medium, doses at R90 were compared depending on whether the SC-IVD was on the surface. Finally, the accuracy of surface doses measured using the SC-IVD was evaluated by comparison with surface doses measured using a Markus chamber. RESULTS: Charge measured using the SC-IVD increased linearly with dose and was within 1% of the average signal according to the dose rate. The signal generated by the SC-IVD increased as the beam angle increased. The presence of the SC-IVD on the surface of a phantom resulted in a 0.5%-2.2% reduction in dose at R90 for 6-20 MeV electron beams compared with the bare phantom. Surface doses measured using the SC-IVD system and Markus chamber differed by less than 5%. CONCLUSIONS: The dosimetric characteristics of the SC-IVD were evaluated in this study. The results showed that it accurately measured the surface dose without a significant difference of dose in the medium when compared with the Markus chamber. The flexibility of the SC-IVD allows it to be attached to a patient's skin, enabling real-time and cost-effective measurement.


Assuntos
Elétrons , Dosimetria in Vivo , Humanos , Pós , Radiometria/métodos , Dosimetria Fotográfica/métodos
8.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497374

RESUMO

This research addresses the problem of interobserver variability (IOV), in which different oncologists manually delineate varying primary gross tumor volume (pGTV) contours, adding risk to targeted radiation treatments. Thus, a method of IOV reduction is urgently needed. Hypothesizing that the radiation oncologist's IOV may shrink with the aid of IOV maps, we propose IOV prediction network (IOV-Net), a deep-learning model that uses the fuzzy membership function to produce high-quality maps based on computed tomography (CT) images. To test the prediction accuracy, a ground-truth pGTV IOV map was created using the manual contour delineations of radiation therapy structures provided by five expert oncologists. Then, we tasked IOV-Net with producing a map of its own. The mean squared error (prediction vs. ground truth) and its standard deviation were 0.0038 and 0.0005, respectively. To test the clinical feasibility of our method, CT images were divided into two groups, and oncologists from our institution created manual contours with and without IOV map guidance. The Dice similarity coefficient and Jaccard index increased by ~6 and 7%, respectively, and the Hausdorff distance decreased by 2.5 mm, indicating a statistically significant IOV reduction (p < 0.05). Hence, IOV-net and its resultant IOV maps have the potential to improve radiation therapy efficacy worldwide.

9.
Radiat Oncol ; 17(1): 186, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384804

RESUMO

BACKGROUND: The Korean Radiation Oncology Group (KROG) 19 - 09 prospective cohort study aims to determine the effect of regional nodal irradiation on regional recurrence rates in ypN0 breast cancer patients. Dosimetric variations between radiotherapy (RT) plans of participating institutions may affect the clinical outcome of the study. We performed this study to assess inter-institutional dosimetric variations by dummy run. METHODS: Twelve participating institutions created RT plans for four clinical scenarios using computed tomography images of two dummy cases. Based on a reference structure set, we analyzed dose-volume histograms after collecting the RT plans. RESULTS: We found variations in dose distribution between institutions, especially in the regional nodal areas. Whole breast and regional nodal irradiation (WBI + RNI) plans had lower inter-institutional agreement and similarity for 95% isodose lines than WBI plans. Fleiss's kappa values, which were used to measure inter-institutional agreement for the 95% isodose lines, were 0.830 and 0.767 for the large and medium breast WBI plans, respectively, and 0.731 and 0.679 for the large and medium breast WBI + RNI plans, respectively. There were outliers in minimum dose delivered to 95% of the structure (D95%) of axillary level 1 among WBI plans and in D95% of the interpectoral region and axillary level 4 among WBI + RNI plans. CONCLUSION: We found inter-institutional and inter-case variations in radiation dose delivered to target volumes and organs at risk. As KROG 19 - 09 is a prospective cohort study, we accepted the dosimetric variation among the different institutions. Actual patient RT plan data should be collected to achieve reliable KROG 19 - 09 study results.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/radioterapia , Estudos Prospectivos , Axila , Radioterapia Adjuvante/métodos , República da Coreia
10.
Sensors (Basel) ; 22(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35957376

RESUMO

Several detectors have been developed to measure radiation doses during radiotherapy. However, most detectors are not flexible. Consequently, the airgaps between the patient surface and detector could reduce the measurement accuracy. Thus, this study proposes a dose measurement system based on a flexible copper indium gallium selenide (CIGS) solar cell. Our system comprises a customized CIGS solar cell (with a size 10 × 10 cm2 and thickness 0.33 mm), voltage amplifier, data acquisition module, and laptop with in-house software. In the study, the dosimetric characteristics, such as dose linearity, dose rate independence, energy independence, and field size output, of the dose measurement system in therapeutic X-ray radiation were quantified. For dose linearity, the slope of the linear fitted curve and the R-square value were 1.00 and 0.9999, respectively. The differences in the measured signals according to changes in the dose rates and photon energies were <2% and <3%, respectively. The field size output measured using our system exhibited a substantial increase as the field size increased, contrary to that measured using the ion chamber/film. Our findings demonstrate that our system has good dosimetric characteristics as a flexible in vivo dosimeter. Furthermore, the size and shape of the solar cell can be easily customized, which is an advantage over other flexible dosimeters based on an a-Si solar cell.


Assuntos
Cobre , Índio , Gálio , Humanos , Doses de Radiação , Radiometria , Selênio , Raios X
11.
Med Phys ; 49(7): 4768-4779, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35396722

RESUMO

PURPOSE: To evaluate the dosimetric characteristics and applications of a dosimetry system composed of a flexible amorphous silicon thin-film solar cell and scintillator screen (STFSC-SS) for therapeutic X-rays. METHODS: The real-time dosimetry system was composed of a flexible a-Si thin-film solar cell (0.2-mm thick), a scintillator screen to increase its efficiency, and an electrometer to measure the generated charge. The dosimetric characteristics of the developed system were evaluated including its energy dependence, dose linearity, and angular dependence. Calibration factors for the signal measured by the system and absorbed dose-to-water were obtained by setting reference conditions. The application and correction accuracy of the developed system were evaluated by comparing the absorbed dose-to-water measured using a patient treatment beam with that measured using the ion chamber. RESULTS: The responses of STFSC-SS to energy, field size, depth, and source-to-surface distance (SSD) were more dependent on measurement conditions than were the responses of the ion chamber, although the former dependence was due to the scintillator screen, not the solar cell. The signals of STFSC-SS were also dependent on dose rate, while the responses of solar cell alone and scintillator screen were not dependent on dose rate. The scintillator screen reduced the output of solar cell at 6 and 15 MV by 0.60 and 0.55%, respectively. The different absorbed dose-to-water measured using STFSC-SS for patient treatment beam differed by 0.4% compared to those measured using the ionization chamber. The uncertainties of the developed system for 6 and 15 MV photon beams were 1.8 and 1.7%, respectively, confirming the accuracy and applicability of this system. CONCLUSIONS: The thin-film solar cell-based detector developed in this study can accurately measure absorbed dose-to-water. The increased signal resulting from the use of the scintillator screen is advantageous for measuring low doses and stable signal output. In addition, this system is flexible, making it applicable to curved surfaces, such as a patient's body, and is cost-effective.


Assuntos
Radiometria , Silício , Humanos , Radiografia , Radiometria/métodos , Água , Raios X
12.
J Toxicol Pathol ; 35(1): 45-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35221495

RESUMO

Platycodi radix is widely used in traditional herbal medicine for the treatment of bronchitis, asthma, pulmonary tuberculosis, hypertension, hyperlipidemia, and diabetes. This study aimed to investigate cell proliferation (Ki-67) and apoptosis (Caspase-3) potential in squamous cell hyperplasia of the stomach induced by a Platycodi radix water extract in a subchronic toxicity study. One hundred formalin-fixed, paraffin-embedded stomach tissues of rats treated with Platycodi radix at doses of 0, 500, 1,000, and 3,000 mg/kg body weight/day were used for the analysis. They were conventionally stained using hematoxylin and eosin (H&E) and immunohistochemically (IHC) stained using caspase-3 and Ki-67 antibodies. The incidence of squamous cell hyperplasia was significantly increased in the 3,000 mg/kg b.w./day treatment group in both sexes (p<0.01). However, the hyperplastic change was completely repaired after 4 weeks of recovery period. Ki-67 expression was similar in all groups, with no statistically significant differences among the groups. Caspase-3 expression was significantly increased in both sexes in the 3,000 mg/kg b.w./day treatment group (p<0.01), compared with the vehicle control groups, and then reduced to normal levels in the recovery groups in both sexes. In conclusion, this study showed that squamous cell hyperplasia induced by the Platycodi radix water extract in the limiting ridge of the stomach is not considered to be abnormal proliferative change; as a result, squamous cell hyperplasia is considered to be a non-adverse effect when induced by the oral administration of the Platycodi radix water extract once daily for 13 weeks in rats.

13.
Pediatr Blood Cancer ; 69(3): e29434, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34766717

RESUMO

PURPOSE: We examined regression patterns in pediatric optic pathway gliomas (OPGs) after proton beam therapy (PBT) and evaluated local control and visual outcomes. METHODS: A total of 42 brain magnetic resonance imaging (MRI) scans from seven consecutive sporadic OPGs that were initially treated with chemotherapy and received PBT between June 2007 and September 2016 at the National Cancer Center, Korea were analyzed. Patients underwent brain MRI regularly before and after PBT. Total tumor, cystic lesion, and solid enhancing lesion area delineation and volume calculations were performed on gadolinium-enhanced T1-weighted MRI using Eclipse version 13, Varian. RESULTS: The median follow-up period after PBT was 70 months (range 47-88). The median age at the time of PBT was 7 years (range 4-16) and the median duration of chemotherapy before referral to PBT center was 25 months (range 3-70). The median time to the greatest increase in cystic volume was 32 months (range 12-43) after PBT. Solid enhancing lesion volume gradually decreased throughout the follow-up period. On an individual basis, total volume change was varied. However, on average, it regressed, although at a slower rate than solid enhancing lesion volume did. The local control rate was 85.7% (5-year progression-free survival rate, 80%; 5-year overall survival rate, 100%) and the rate of vision preservation was 71.4% (five of seven patients). CONCLUSION: The regression patterns in pediatric OPGs after PBT involve significant cystic change. Therefore, total volume is not appropriate for evaluating response. Care by a multidisciplinary team is necessary to manage clinical symptoms related to radiologic changes.


Assuntos
Glioma do Nervo Óptico , Terapia com Prótons , Encéfalo , Criança , Humanos , Lactente , Imageamento por Ressonância Magnética , Glioma do Nervo Óptico/radioterapia , Terapia com Prótons/métodos , Estudos Retrospectivos
14.
Front Oncol ; 11: 707464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595112

RESUMO

To automatically identify optimal beam angles for proton therapy configured with the double-scattering delivery technique, a beam angle optimization method based on a convolutional neural network (BAODS-Net) is proposed. Fifty liver plans were used for training in BAODS-Net. To generate a sequence of input data, 25 rays on the eye view of the beam were determined per angle. Each ray collects nine features, including the normalized Hounsfield unit and the position information of eight structures per 2° of gantry angle. The outputs are a set of beam angle ranking scores (S beam) ranging from 0° to 359°, with a step size of 1°. Based on these input and output designs, BAODS-Net consists of eight convolution layers and four fully connected layers. To evaluate the plan qualities of deep-learning, equi-spaced, and clinical plans, we compared the performances of three types of loss functions and performed K-fold cross-validation (K = 5). For statistical analysis, the volumes V27Gy and V30Gy as well as the mean, minimum, and maximum doses were calculated for organs-at-risk by using a paired-samples t-test. As a result, smooth-L1 loss showed the best optimization performance. At the end of the training procedure, the mean squared errors between the reference and predicted S beam were 0.031, 0.011, and 0.004 for L1, L2, and smooth-L1 loss, respectively. In terms of the plan quality, statistically, PlanBAO has no significant difference from PlanClinic (P >.05). In our test, a deep-learning based beam angle optimization method for proton double-scattering treatments was developed and verified. Using Eclipse API and BAODS-Net, a plan with clinically acceptable quality was created within 5 min.

15.
Facial Plast Surg Clin North Am ; 29(4): 487-495, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34579832

RESUMO

Asians have anatomic and clinical characteristics to be considered before forehead lift. Because of the anatomic characteristics of Asians, for the better outcomes of blepharoplasty or augmentation rhinoplasty, forehead lift as a combined surgery must be considered beforehand. Forehead lift is frequently indicated in young Asian patients. Endoscopic browlift without visible scar is favored for patients, and it can be done in a modified multiplane fashion for better outcomes in patients with thick and redundant skin. There are rare but severe complications of endoscopic forehead lift, such as motor nerve paresis and diplopia, although they are temporary in most cases.


Assuntos
Blefaroplastia , Ritidoplastia , Povo Asiático , Pálpebras/cirurgia , Testa/cirurgia , Humanos
16.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500445

RESUMO

The quantum confinement effect and interesting optical properties of cesium lead halide (CsPbX3; X = Cl, Br, I) perovskite quantum dots (QDs) and nanocrystals (NCs) have given a new horizon to lighting and photonic applications. Given the exponential rate at which scientific results on CsPbX3NCs are published in the last few years, it can be expected that the research in CsPbX3NCs will further receive increasing scientific interests in the near future and possibly lead to great commercial opportunities to realize these materials based practical applications. With the rapid progress in the single-photon emitting CsPbX3QDs and NCs, practical applications of the quantum technologies such as single-photon emitting light-emitting diode, quantum lasers, quantum computing might soon be possible. But to reach at cutting edge of stable perovskite QDs/NCs, the study of fundamental insight and theoretical aspects of crystal design is yet insufficient. Even more, it has aroused many unanswered questions related to the stability, optical and electronic properties of the CsPbX3QDs. Aim of the present review is to illustrate didactically a precise study of recent progress in the synthesis, properties and applications of CsPbX3QDs and NCs. Critical issues that currently restrict the applicability of these QDs will be identified and advanced methodologies currently in the developing queue, to overcome the roadblock, will be presented. And finally, the prospects for future directions will be provided.

17.
Radiat Oncol ; 16(1): 154, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404441

RESUMO

BACKGROUND: Patient-specific dose prediction improves the efficiency and quality of radiation treatment planning and reduces the time required to find the optimal plan. In this study, a patient-specific dose prediction model was developed for a left-sided breast clinical case using deep learning, and its performance was compared with that of conventional knowledge-based planning using RapidPlan™. METHODS: Patient-specific dose prediction was performed using a contour image of the planning target volume (PTV) and organs at risk (OARs) with a U-net-based modified dose prediction neural network. A database of 50 volumetric modulated arc therapy (VMAT) plans for left-sided breast cancer patients was utilized to produce training and validation datasets. The dose prediction deep neural network (DpNet) feature weights of the previously learned convolution layers were applied to the test on a cohort of 10 test sets. With the same patient data set, dose prediction was performed for the 10 test sets after training in RapidPlan. The 3D dose distribution, absolute dose difference error, dose-volume histogram, 2D gamma index, and iso-dose dice similarity coefficient were used for quantitative evaluation of the dose prediction. RESULTS: The mean absolute error (MAE) and one standard deviation (SD) between the clinical and deep learning dose prediction models were 0.02 ± 0.04%, 0.01 ± 0.83%, 0.16 ± 0.82%, 0.52 ± 0.97, - 0.88 ± 1.83%, - 1.16 ± 2.58%, and - 0.97 ± 1.73% for D95%, Dmean in the PTV, and the OARs of the body, left breast, heart, left lung, and right lung, respectively, and those measured between the clinical and RapidPlan dose prediction models were 0.02 ± 0.14%, 0.87 ± 0.63%, - 0.29 ± 0.98%, 1.30 ± 0.86%, - 0.32 ± 1.10%, 0.12 ± 2.13%, and - 1.74 ± 1.79, respectively. CONCLUSIONS: In this study, a deep learning method for dose prediction was developed and was demonstrated to accurately predict patient-specific doses for left-sided breast cancer. Using the deep learning framework, the efficiency and accuracy of the dose prediction were compared to those of RapidPlan. The doses predicted by deep learning were superior to the results of the RapidPlan-generated VMAT plan.


Assuntos
Neoplasias da Mama/radioterapia , Aprendizado Profundo , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Órgãos em Risco , Dosagem Radioterapêutica
18.
J Appl Clin Med Phys ; 22(6): 104-118, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036701

RESUMO

The present study verified and evaluated the dosimetric effects of protons scattered from a snout and an aperture in clinical practice, when a range compensator was included. The dose distribution calculated by a treatment planning system (TPS) was compared with the measured dose distribution and the dose distribution calculated by Monte Carlo simulation at several depths. The difference between the measured and calculated results was analyzed using Monte Carlo simulation with filtration of scattering in the snout and aperture. The dependence of the effects of scattered protons on snout size, beam range, and minimum thickness of the range compensator was also investigated using the Monte Carlo simulation. The simulated and measured results showed that the additional dose compared with the results calculated by the TPS at shallow depths was mainly due to protons scattered by the snout and aperture. This additional dose was filtered by the structure of the range compensator so that it was observed under the thin region of the range compensator. The maximum difference was measured at a depth of 16 mm (8.25%), with the difference decreasing with depth. Analysis of protons contributing to the additional dose showed that the contribution of protons scattered from the snout was greater than that of protons scattered from the aperture when a narrow snout was used. In the Monte Carlo simulation, this effect of scattered protons was reduced when wider snouts and longer-range proton beams were used. This effect was also reduced when thicker range compensator bases were used, even with a narrow snout. This study verified the effect of scattered protons even when a range compensator was included and emphasized the importance of snout-scattered protons when a narrow snout is used for small fields. It indicated that this additional dose can be reduced by wider snouts, longer range proton beams, and thicker range compensator bases. These results provide a better understanding of the additional dose from scattered protons in clinical practice.


Assuntos
Terapia com Prótons , Simulação por Computador , Humanos , Método de Monte Carlo , Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Regul Toxicol Pharmacol ; 120: 104844, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33359266

RESUMO

Dioscorea Rhizome is widely used as a traditional herbal medicine to treat asthma, diarrhea, cough, bronchitis, spermatorrhea, leukorrhea, and rheumatoid arthritis. This study investigated the potential subchronic toxicity of a D. Rhizome water extract (DRWE) after repeated oral administration at 0, 800, 2000, and 5000 mg/kg/day in rats for 13 weeks. During the study period, clinical signs, mortality, body weight, food consumption, water consumption, urinalysis, ophthalmoscopy, hematology, serum biochemistry, gross pathology, organ weights, and histopathology were examined. The 13-week repeated oral administration of DRWE to rats resulted in an increased incidence of zona glomerulosa hypertrophy and hyperplasia in the adrenal gland at dose levels of ≥2000 mg/kg/day in both sexes. However, these findings are considered as non-adverse adaptive changes because of minimal histological changes in the lesions, which were not accompanied by any corresponding alterations in serum electrolytes and adrenal gland weight. No treatment-related adverse effects on clinical signs, body weight, food and water consumption, ophthalmic examination, urinalysis, hematology, serum biochemistry, necropsy findings, and organ weights were observed at any dose tested. Under the present experimental conditions, the no-observed-adverse-effect level of the DRWE was considered to be 5000 mg/kg/day in both sexes, and no target organs were identified.


Assuntos
Dioscorea/toxicidade , Extratos Vegetais/toxicidade , Rizoma/toxicidade , Testes de Toxicidade Subcrônica/métodos , Água , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Feminino , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/fisiologia , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
PLoS One ; 15(12): e0242966, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264363

RESUMO

We evaluate the ocular effects of proton beam therapy (PBT) in a single institution, in Korea, and identify factors contributing to decreasing visual acuity (VA) after PBT. A total of 40 patients who received PBT for choroidal melanoma (2009‒2016) were reviewed. Dose fractionation was 60‒70 cobalt gray equivalents (CGEs) over five fractions. Complete ophthalmic examinations including funduscopy and ultrasonography were performed at baseline and at 3, 6, and 12 months after PBT, then annually thereafter. Only patients with at least 12 months follow-up were included. During the follow-up, consecutive best-corrected visual acuity (BCVA) changes were determined, and univariate and multivariate logistic regression analyses were performed to identify predictors for VA loss. The median follow-up duration was 32 months (range: 12‒82 months). The final BCVA of nine patients was > 20/40. The main cause of vision loss was intraocular bleeding, such as neovascular glaucoma or retinal hemorrhage. Vision loss was correlated with the tumor size, tumor distance to the optic disc or fovea, maculae receiving 30 CGEs, optic discs receiving 30 CGEs, and retinas receiving 30 CGEs. Approximately one-third of PBT-treated choroidal melanoma patients with good pretreatment BCVA maintained their VA. The patients who finally lost vision (VA < count fingers) usually experienced rapid declines in VA from 6‒12 months after PBT. Tumor size, tumor distance to the optic disc or fovea, volume of the macula, and optic discs or retinas receiving 30 CGEs affected the final VA.


Assuntos
Neoplasias da Coroide/radioterapia , Terapia com Prótons , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Coroide/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica/efeitos da radiação , República da Coreia , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA