Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Small ; : e2400824, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764257

RESUMO

Halide perovskite, renowned for its multifunctional properties, shows considerable promise for realizing self-charging power systems. In this study, a lead-free methylammonium bismuth iodide (MA3Bi2I9) perovskite is used to create a self-charging power unit (SPU). This involves constructing a hybrid piezoelectric-triboelectric nanogenerator (Hybrid-TENG) and utilizing MA3Bi2I9 for energy storage as an anode in a lithium-ion battery (LIB). Initially, MA3Bi2I9 nanorods are synthesized and composited with a polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene polymer. The dielectric and mechanical properties of composite films having perovskite loading content are investigated. The optimized Hybrid-TENG exhibits superior performance, generating a voltage of 537 V, current density of 13.2 µA cm- 2, and maximum power density of 3.04 mW cm-2, which can be attributed to the high piezoelectric coefficient of MA3Bi2I9 nanorods (≈20.6 pm V-1). A MA3Bi2I9 thin film, serving as an electrode in LIB, demonstrates a high specific capacity of 2378.9 mAh cm-3 (578.8 mAh g-1) with a capacity retention of ≈87.5% over 100 cycles, underscoring its stable performance. Furthermore, a Hybrid-TENG is employed to charge the MA3Bi2I9-based LIB, thus realizing an SPU for driving portable electronics. This study highlights the promising potential of perovskites for developing efficient nanogenerators and LIBs, paving the way for sustainable energy solutions in small-scale electronics.

2.
ACS Appl Mater Interfaces ; 16(20): 26922-26931, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718823

RESUMO

Depth profiling is an essential method to investigate the physical and chemical properties of a solid electrolyte and electrolyte/electrode interface. In conventional depth profiling, various spectroscopic tools such as X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) are utilized to monitor the chemical states along with ion bombardment to etch a sample. Nevertheless, the ion bombardment during depth profiling results in an inevitable systematic error, i.e., the accumulation of mobile ions at the electrolyte/electrode interface, known as the ion pile-up phenomenon. Here, we propose a novel method using bias potential, the substrate-bias method, to prevent the ion pile-up phenomena during depth profiling of a solid electrolyte. When the positive bias potential is applied on the substrate (electrode), the number of accumulating ions at the electrolyte/electrode interface is significantly reduced. The in-depth XPS analysis with the biased electrode reveals not only the suppression of the ion pile-up phenomena but also the altered chemical states at the interfacial region between the electrolyte and electrode depending on the bias. The proposed substrate-bias method can be a good alternative scheme for an efficient yet precise depth profiling technique for a solid electrolyte.

3.
NAR Cancer ; 6(1): zcae013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500596

RESUMO

Nucleotide excision repair (NER) reduces efficacy of treatment with platinum (Pt)-based chemotherapy by removing Pt lesions from DNA. Previous study has identified that missense mutation or loss of the NER genes Excision Repair Cross Complementation Group 1 and 2 (ERCC1 and ERCC2) leads to improved patient outcomes after treatment with Pt-based chemotherapies. Although most NER gene alterations found in patient tumors are missense mutations, the impact of mutations in the remaining nearly 20 NER genes is unknown. Towards this goal, we previously developed a machine learning strategy to predict genetic variants in an essential NER protein, Xeroderma Pigmentosum Complementation Group A (XPA), that disrupt repair. In this study, we report in-depth analyses of a subset of the predicted variants, including in vitro analyses of purified recombinant protein and cell-based assays to test Pt agent sensitivity in cells and determine mechanisms of NER dysfunction. The most NER deficient variant Y148D had reduced protein stability, weaker DNA binding, disrupted recruitment to damage, and degradation. Our findings demonstrate that tumor mutations in XPA impact cell survival after cisplatin treatment and provide valuable mechanistic insights to improve variant effect prediction. Broadly, these findings suggest XPA tumor variants should be considered when predicting chemotherapy response.

4.
Adv Mater ; 36(14): e2309183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160321

RESUMO

Development of miniaturized thin-film lithium-ion batteries (TF-LIBs) using vacuum deposition techniques is crucial for low-scale applications, but addressing low energy density remains a challenge. In this work, structures analogous to SiOx-based thin-film electrodes are designed with close resemblance to traditional LIB slurry formulations including active material, conductive agent, and binder. The thin-film is produced using mid-frequency sputtering with a single hybrid target consisting of SiOx nanoparticles, carbon nanotubes, and polytetrafluoroethylene. The thin-film SiOx/PPFC (plasma-polymerized fluorocarbon) involves a combination of SiOx and conductive carbon within the PPFC matrix. This results in enhanced electronic conductivity and superior elasticity and hardness in comparison to a conventional pure SiOx-based thin-film. The electrochemical performance of the half-cell consisting of thin-film SiOx/PPFC demonstrates remarkable cycling stability, with a capacity retention of 74.8% up to the 1000th cycle at 0.5 C. In addition, a full cell using the LiNi0.6Co0.2Mn0.2O2 thin-film as the cathode material exhibits an exceptional initial capacity of ≈120 mAh g-1 at 0.1 C and cycle performance, marked by a capacity retention of 90.8% from the first cycle to the 500th cycle at a 1 C rate. This work will be a stepping stone for the AM/CB/B composite electrodes in TF-LIBs.

5.
ACS Appl Mater Interfaces ; 15(40): 47229-47237, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782228

RESUMO

Neuromorphic computing, an innovative technology inspired by the human brain, has attracted increasing attention as a promising technology for the development of artificial intelligence systems. This study proposes synaptic transistors with a Li1-xAlxTi2-x(PO4)3 (LATP) layer to analyze the conductance modulation linearity, which is essential for weight mapping and updating during on-chip learning processes. The high ionic conductivity of the LATP electrolyte provides a large hysteresis window and enables linear weight update in synaptic devices. The results demonstrate that optimizing the LATP layer thickness improves the conductance modulation and linearity of synaptic transistors during potentiation and degradation. A 20 nm-thick LATP layer results in the most nonlinear depression (αd = -6.59), whereas a 100 nm-thick LATP layer results in the smallest nonlinearity (αd = -2.22). Additionally, a device with the optimal 100 nm-thick LATP layer exhibits the highest average recognition accuracy of 94.8% and the smallest fluctuation, indicating that the linearity characteristics of a device play a crucial role in weight update during learning and can significantly affect the recognition accuracy.

6.
bioRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37425789

RESUMO

Nucleotide excision repair (NER) neutralizes treatment with platinum (Pt)-based chemotherapy by removing Pt lesions from DNA. Previous study has identified that missense mutation or loss of either of the NER genes Excision Repair Cross Complementation Group 1 and 2 ( ERCC1 and ERCC2 ) leads to improved patient outcomes after treatment with Pt-based chemotherapies. Although most NER gene alterations found in patient tumors are missense mutations, the impact of such mutations in the remaining nearly 20 NER genes is unknown. Towards this goal, we previously developed a machine learning strategy to predict genetic variants in an essential NER scaffold protein, Xeroderma Pigmentosum Complementation Group A (XPA), that disrupt repair activity on a UV-damaged substrate. In this study, we report in-depth analyses of a subset of the predicted NER-deficient XPA variants, including in vitro analyses of purified recombinant protein and cell-based assays to test Pt agent sensitivity in cells and determine mechanisms of NER dysfunction. The most NER deficient variant Y148D had reduced protein stability, weaker DNA binding, disrupted recruitment to damage, and degradation resulting from tumor missense mutation. Our findings demonstrate that tumor mutations in XPA impact cell survival after cisplatin treatment and provide valuable mechanistic insights to further improve variant effect prediction efforts. More broadly, these findings suggest XPA tumor variants should be considered when predicting patient response to Pt-based chemotherapy. Significance: A destabilized, readily degraded tumor variant identified in the NER scaffold protein XPA sensitizes cells to cisplatin, suggesting that XPA variants can be used to predict response to chemotherapy.

7.
Proc Natl Acad Sci U S A ; 120(11): e2208860120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893274

RESUMO

XPA is a central scaffold protein that coordinates the assembly of repair complexes in the global genome (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER) subpathways. Inactivating mutations in XPA cause xeroderma pigmentosum (XP), which is characterized by extreme UV sensitivity and a highly elevated skin cancer risk. Here, we describe two Dutch siblings in their late forties carrying a homozygous H244R substitution in the C-terminus of XPA. They present with mild cutaneous manifestations of XP without skin cancer but suffer from marked neurological features, including cerebellar ataxia. We show that the mutant XPA protein has a severely weakened interaction with the transcription factor IIH (TFIIH) complex leading to an impaired association of the mutant XPA and the downstream endonuclease ERCC1-XPF with NER complexes. Despite these defects, the patient-derived fibroblasts and reconstituted knockout cells carrying the XPA-H244R substitution show intermediate UV sensitivity and considerable levels of residual GG-NER (~50%), in line with the intrinsic properties and activities of the purified protein. By contrast, XPA-H244R cells are exquisitely sensitive to transcription-blocking DNA damage, show no detectable recovery of transcription after UV irradiation, and display a severe deficiency in TC-NER-associated unscheduled DNA synthesis. Our characterization of a new case of XPA deficiency that interferes with TFIIH binding and primarily affects the transcription-coupled subpathway of nucleotide excision repair, provides an explanation of the dominant neurological features in these patients, and reveals a specific role for the C-terminus of XPA in TC-NER.


Assuntos
Neoplasias Cutâneas , Xeroderma Pigmentoso , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Alelos , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Reparo do DNA/genética , Dano ao DNA/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Neoplasias Cutâneas/genética , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo
8.
Nanomaterials (Basel) ; 13(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678076

RESUMO

The increase in demand for energy storage devices, including portable electronic devices, electronic mobile devices, and energy storage systems, has led to substantial growth in the market for Li-ion batteries (LiB). However, the resulting environmental concerns from the waste of LiB and pollutants from the manufacturing process have attracted considerable attention. In particular, N-methylpyrrolidone, which is utilized during the manufacturing process for preparing cathode or anode slurries, is a toxic organic pollutant. Therefore, the dry-based process for electrodes is of special interest nowadays. Herein, we report the fabrication of a cathode by a mortar-based dry process using NCM811, a carbon conductor, and poly(tetrafluoroethylene)binder. The electrochemical performance of the cathode was compared in terms of the types of conductors: carbon nanotubes and carbon black. The electrodes with carbon nanotubes showed an ameliorated performance in terms of cycle testing, capacity retention, and mechanical properties.

9.
NAR Cancer ; 5(1): zcac044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683914

RESUMO

Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.

10.
Health Commun ; 38(11): 2450-2460, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35610554

RESUMO

Two experiments examined if persuasive effectiveness of health messages varies as a function of the communication channel (Facebook vs. news website), and if so, why. Specifically, we examined perceived ulterior motives of the communicator as an explanation for why public health campaigns may be less effective when conveyed via mass-directed (vs. interpersonal) channels, and further investigated if message recipients' health interest moderates such channel effects, if any. In Study 1 (N = 103), reading a medical news reporter's Facebook post on dental health (vs. a news article consisting of the identical content) lowered the participants' suspicion of ulterior motives of the source, which then promoted message-consistent attitudes and behavioral intention. Such effects, however, emerged only for those more interested in health. Using a different topic (a low-carb, high-fat diet), Study 2 (N = 338) replicated Study 1 findings, confirming the conditional persuasive advantages of social media over mass media as a health campaign channel.


Assuntos
Comunicação em Saúde , Mídias Sociais , Humanos , Meios de Comunicação de Massa , Saúde Pública , Motivação , Promoção da Saúde
11.
J Anal Toxicol ; 47(1): 81-88, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35640302

RESUMO

There have been no detailed investigations regarding solid-phase-extraction (SPE) optimization and screening for the degradation products of ethyl (1-(diethylamino)ethylidene)phosphoramidofluoridate (A234) in various environmental samples. Therefore, as a first step in the selective SPE of the degradation products of A234, we optimized the SPE adsorption and extraction parameters for the A234 degradation product ethylhydrogen (1-(diethylamino)ethylidene)phosphoramidate (cpd 1). Among various SPE cartridges, the Si cartridge (500 mg, 3 mL) selectively extracted cpd 1 using an elution volume of 4 mL of 25% H2O in acetonitrile, which eliminated most interference without cpd 1 loss during loading and washing. In addition, the sorbent capacity is also critical in the adsorption of cpd 1. The Si cartridge (500 mg, 3 mL) retained cpd 1 in the concentration range 1-10 µg/mL. The linearity of detector response of cpd 1 in deionized H2O was studied in the range of 1.0-100 ng/mL and showed good linearity with γ2 ranging from 0.9979 to 0.996. The limits of detection for cpd 1 are 10 ng/mL in the product-scan mode and 100 ng/mL in the full-scan mode. Also, after we optimized the SPE method, we validated the precision and accuracy of the Si-cartridge extraction method in real soil samples with diverse concentrations. The precision ranged from 2.5% to 5.3%. This newly developed SPE is applicable to the analysis of a degradation product of Novichok A234 in various environmental matrices, such as water, soil and sand, in the Organization for the Prohibition of Chemical Weapons (OPCW) proficiency test and unknown samples collected from suspected sites.


Assuntos
Extração em Fase Sólida , Poluentes Químicos da Água , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise
12.
ACS Appl Mater Interfaces ; 15(1): 1525-1534, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538477

RESUMO

The top-gate structure is currently adopted in various flat-panel displays because of its diverse advantages such as passivation from the external environment and process compatibility with industries. However, the mobility of the currently commercialized top-gate oxide thin-film transistors (TFTs) is insufficient to drive ultrahigh-resolution displays. Accordingly, this work suggests metal-capped Zn-Ba-Sn-O transistors with top-gate structures for inducing mobility-enhancing effects. The fabricated top-gate device contains para-xylylene (PPx), which is deposited by a low-temperature chemical vapor deposition (CVD) process, as a dielectric layer and exhibits excellent interfacial and dielectric properties. A technology computer-aided design (TCAD) device simulation reveals that the mobility enhancement in the Al-capped (Zn,Ba)SnO3 (ZBTO) TFT is attributed not only to the increase in the electron concentration, which is induced by band engineering due to the Al work function but also to the increased electron velocity due to the redistribution of the lateral electric field. As a result, the mobility of the Al-capped top-gate ZBTO device is 5 times higher (∼110 cm2/Vs) than that of the reference device. These results demonstrate the applicability of top-gate oxide TFTs with ultrahigh mobility in a wide range of applications, such as for high-resolution, large-area, and flexible displays.

13.
Proc Natl Acad Sci U S A ; 119(34): e2207408119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969784

RESUMO

The xeroderma pigmentosum protein A (XPA) and replication protein A (RPA) proteins fulfill essential roles in the assembly of the preincision complex in the nucleotide excision repair (NER) pathway. We have previously characterized the two interaction sites, one between the XPA N-terminal (XPA-N) disordered domain and the RPA32 C-terminal domain (RPA32C), and the other with the XPA DNA binding domain (DBD) and the RPA70AB DBDs. Here, we show that XPA mutations that inhibit the physical interaction in either site reduce NER activity in biochemical and cellular systems. Combining mutations in the two sites leads to an additive inhibition of NER, implying that they fulfill distinct roles. Our data suggest a model in which the interaction between XPA-N and RPA32C is important for the initial association of XPA with NER complexes, while the interaction between XPA DBD and RPA70AB is needed for structural organization of the complex to license the dual incision reaction. Integrative structural models of complexes of XPA and RPA bound to single-stranded/double-stranded DNA (ss/dsDNA) junction substrates that mimic the NER bubble reveal key features of the architecture of XPA and RPA in the preincision complex. Most critical among these is that the shape of the NER bubble is far from colinear as depicted in current models, but rather the two strands of unwound DNA must assume a U-shape with the two ss/dsDNA junctions localized in close proximity. Our data suggest that the interaction between XPA and RPA70 is key for the organization of the NER preincision complex.


Assuntos
Reparo do DNA , Proteína de Replicação A , Proteína de Xeroderma Pigmentoso Grupo A , DNA/metabolismo , Dano ao DNA , Ligação Proteica , Domínios Proteicos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
14.
Nutr Res Pract ; 16(4): 450-463, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919293

RESUMO

BACKGROUND/OBJECTIVES: Adolescents who skip breakfast have an increased prevalence of chronic diseases. Thus, we aimed to evaluate whether the intake of rice-based breakfast had positive effects on blood glucose indices and to determine the possibility of diabetes prevalence in Korean youths who habitually skip breakfast. SUBJECTS/METHODS: In this randomized parallel-group controlled trial, 81 subjects who were suitable for compliance among 105 middle-and high-school students aged 12-18 years who usually skipped breakfast were included in this study (rice-meal group [RMG], n = 26; wheat-meal group [WMG], n = 29; general-meal group [GMG], n = 26). The RMG and WMG received a rice-based breakfast and a wheat-based breakfast for 12 weeks, respectively. The anthropometric indices, blood glucose indices, and metabolites were measured at baseline and the endpoint, respectively. RESULTS: The mean body weights in the RMG, WMG, and GMG groups at the endpoint were 62.44 kg, 61.80 kg, and 60.28 kg, respectively, and the mean body weights of the WMG and GMG groups at the endpoint were significantly higher than that at baseline (P < 0.05). The levels of fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) values were significantly decreased in the RMG group at the endpoint compared to baseline (P < 0.05, P < 0.05, respectively). The levels of tryptophan and tyrosine in the WMG group at the endpoint were significantly higher than that those at baseline (P < 0.01, P < 0.05, respectively). CONCLUSIONS: Rice-based breakfast has positive effects on fasting insulin levels and HOMA-IR in Korean adolescents who skip breakfast. Additionally, it was found that a skipping breakfast could increase the prevalence of diabetes in adolescents who skip breakfast. Therefore, in addition to reducing breakfast skipping, it is vital to develop a rice-based menu that fits teenage preferences to prevent chronic diseases such as diabetes. Trial Registration: Clinical Research Information Service Identifier: KCT0004089.

15.
Nat Commun ; 13(1): 4762, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963869

RESUMO

Cells employ global genome nucleotide excision repair (GGR) to eliminate a broad spectrum of DNA lesions, including those induced by UV light. The lesion-recognition factor XPC initiates repair of helix-destabilizing DNA lesions, but binds poorly to lesions such as CPDs that do not destabilize DNA. How difficult-to-repair lesions are detected in chromatin is unknown. Here, we identify the poly-(ADP-ribose) polymerases PARP1 and PARP2 as constitutive interactors of XPC. Their interaction results in the XPC-stimulated synthesis of poly-(ADP-ribose) (PAR) by PARP1 at UV lesions, which in turn enables the recruitment and activation of the PAR-regulated chromatin remodeler ALC1. PARP2, on the other hand, modulates the retention of ALC1 at DNA damage sites. Notably, ALC1 mediates chromatin expansion at UV-induced DNA lesions, leading to the timely clearing of CPD lesions. Thus, we reveal how chromatin containing difficult-to-repair DNA lesions is primed for repair, providing insight into mechanisms of chromatin plasticity during GGR.


Assuntos
Cromatina , Inibidores de Poli(ADP-Ribose) Polimerases , Cromatina/genética , DNA/genética , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo
16.
ACS Chem Biol ; 17(7): 1672-1676, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35700389

RESUMO

2,6-Diaminopurine (Z) is a naturally occurring adenine (A) analog that bacteriophages employ in place of A in their genetic alphabet. Recent discoveries of biogenesis pathways of Z in bacteriophages have stimulated substantial research interest in this DNA modification. Here, we systematically examined the effects of Z on the efficiency and fidelity of DNA transcription. Our results showed that Z exhibited no mutagenic yet substantial inhibitory effects on transcription mediated by purified T7 RNA polymerase and by human RNA polymerase II in HeLa nuclear extracts and in human cells. A structurally related adenine analog, 2-aminopurine (2AP), strongly blocked T7 RNA polymerase but did not impede human RNA polymerase II in vitro or in human cells, where no mutant transcript could be detected. The lack of mutagenic consequence and the presence of a strong blockage effect of Z on transcription suggest a role of Z in transcriptional regulation. Z is also subjected to removal by transcription-coupled nucleotide-excision repair (TC-NER), but not global-genome NER in human cells. Our findings provide new insight into the effects of Z on transcription and its potential biological functions.


Assuntos
2-Aminopurina , RNA Polimerase II , 2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacologia , DNA , Reparo do DNA , Humanos , RNA Polimerase II/metabolismo , Transcrição Gênica
17.
Cyberpsychol Behav Soc Netw ; 25(8): 496-503, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35723669

RESUMO

An online experiment (N = 384) examined when and how the identity of the comment moderator (artificial intelligence [AI] vs. human) on a news website affects the extent to which individuals (a) suspect political motives for comment removal and (b) believe in the AI heuristic ("AI is objective, neutral, accurate, and fair"). Specifically, we investigated how the provision of an explanation for comment removal (none vs. real vs. placebic), and opinion congeniality between the remaining comments and the user's opinion (uncongenial vs. congenial) qualify social responses to AI. Results showed that news users were more suspicious of political motives for an AI (vs. human) moderator's comment removal (a) when the remaining comments were uncongenial, and (b) when no explanation was offered for deleted comments. Providing a real explanation (vs. none) attenuated participants' suspicion of political motives behind comment removal, but only for the AI moderator. When AI moderated the comments section, the exposure to congenial (vs. uncongenial) comments led participants to endorse the AI heuristic more strongly, but only in the absence of an explanation for comment removal. By contrast, the participants' belief in AI heuristic was stronger when a human moderator preserved uncongenial (vs. congenial) comments. Apparently, they considered AI as a viable alternative to a human moderator whose performance was unsatisfactory.


Assuntos
Inteligência Artificial , Atitude , Afeto , Heurística , Humanos , Motivação
18.
Small ; 18(24): e2201134, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35506524

RESUMO

All-solid-state thin-film batteries (ASSTFBs) are promising next-generation battery systems, but critical challenges such as low-energy-density remain. The low-energy-density might persist with low-voltage cathode material; hence, high-voltage cathode material development is required. While LiNi0.5 Mn1.5 O4 (LNM) has been considered a promising high-voltage cathode material. This study investigates the electrochemical properties of LNM thin films based on the correlation between the ordering of cations (Ni and Mn) and oxygen vacancies (VO ). The authors find that the cations' order changes from a disordered structure to an ordered structure with an increased oxygen flow rate during deposition. The optimized LNM fabricated using a 60:40 ratio of Ar to O2 exhibits the highest rate capability (321.4 mAh cm-3 @ 20 C) and most prolonged cycle performance for 500 cycles. The role of VO within the LNM structure and the lower activation energy of ordered LNM compared to disordered LNM through first-principles density functional theory calculations is elucidated. The superior electrochemical performance (276.9 mAh cm-3 @ 0.5 C) and high cyclic performance (at 93.9%, 500 cycles) are corroborated by demonstrating flexible ASSTFB cells using LiPON solid-state electrolyte and thin-film Li anode. This work paves the way for future research on the fabrication of high-performance flexible ASSTFBs.

19.
Mol Cell ; 82(7): 1343-1358.e8, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35271816

RESUMO

Nucleotide excision repair (NER) counteracts the onset of cancer and aging by removing helix-distorting DNA lesions via a "cut-and-patch"-type reaction. The regulatory mechanisms that drive NER through its successive damage recognition, verification, incision, and gap restoration reaction steps remain elusive. Here, we show that the RAD5-related translocase HLTF facilitates repair through active eviction of incised damaged DNA together with associated repair proteins. Our data show a dual-incision-dependent recruitment of HLTF to the NER incision complex, which is mediated by HLTF's HIRAN domain that binds 3'-OH single-stranded DNA ends. HLTF's translocase motor subsequently promotes the dissociation of the stably damage-bound incision complex together with the incised oligonucleotide, allowing for an efficient PCNA loading and initiation of repair synthesis. Our findings uncover HLTF as an important NER factor that actively evicts DNA damage, thereby providing additional quality control by coordinating the transition between the excision and DNA synthesis steps to safeguard genome integrity.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , DNA/genética , DNA/metabolismo , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética
20.
ACS Appl Mater Interfaces ; 14(11): 13490-13498, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258276

RESUMO

Zinc oxynitride (ZnON) has the potential to overcome the performance and stability limitations of current amorphous oxide semiconductors because ZnON-based thin-film transistors (TFTs) have a high field-effect mobility of 50 cm2/Vs and exceptional stability under bias and light illumination. However, due to the weak zinc-nitrogen interaction, ZnON is chemically unstable─N is rapidly volatilized in air. As a result, recent research on ZnON TFTs has focused on improving air stability. We demonstrate through experimental and first-principles studies that the ZnF2/ZnON bilayer structure provides a facile way to achieve air stability with carrier controllability. This increase in air stability (e.g., nitrogen non-volatilization) occurs because the ZnF2 layer effectively protects the atomic mixing between ZnON and air, and the decrease in the ZnON carrier concentration is caused by a shallow-to-deep electronic transition of nitrogen deficiency diffused from ZnON into the interface. Further, the TFT based on the ZnF2/ZnON bilayer structure enables long-term air stability while retaining an optimal switching property of high field-effect mobility (∼100 cm2/Vs) even at a relatively low post-annealing temperature. The ZnF2/ZnON-bilayer TFT device exhibits fast switching behavior between 1 kHz and 0.1 MHz while maintaining a stable and clear switching response, paving the way for next-generation high-speed electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA