RESUMO
Radiofrequency electromagnetic fields (RF-EMFs) can penetrate tissues and potentially influence endocrine and brain development. Despite increased mobile phone use among children and adolescents, the long-term effects of RF-EMF exposure on brain and endocrine development remain unclear. This study investigated the effects of long-term evolution band (LTE) EMF exposure on thyroid hormone levels, crucial for metabolism, growth, and development. Four-week-old male mice (C57BL/6) were exposed to LTE EMF (whole-body average specific absorption rate [SAR] 4 W/kg) or a positive control (lead; Pb, 300 ppm in drinking water) for 4 weeks. Subsequently, the mice underwent behavioral tests including open field, marble burying, and nest building. Blood pituitary and thyroid hormone levels, and thyroid hormone-regulating genes within the hypothalamus-pituitary-thyroid (HPT) axis were analyzed. LTE exposure increased T3 levels, while Pb exposure elevated T3 and T4 and decreased ACTH levels. The LTE EMF group showed no gene expression alterations in the thyroid and pituitary glands, but hypothalamic Dio2 and Dio3 expressions were significantly reduced compared to that in the sham-exposed group. Pb exposure altered the hypothalamic mRNA levels of Oatp1c1 and Trh, pituitary mRNA of Trhr, and Tpo and Tg expression in the thyroid. In conclusion, LTE EMF exposure altered hypothalamic Dio2 and Dio3 expression, potentially impacting the HPT axis function. Further research is needed to explore RF-EMF's impacts on the endocrine system.
Assuntos
Comportamento Animal , Campos Eletromagnéticos , Hormônios Tireóideos , Animais , Masculino , Campos Eletromagnéticos/efeitos adversos , Camundongos , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/sangue , Comportamento Animal/efeitos da radiação , Camundongos Endogâmicos C57BL , Glândula Tireoide/metabolismo , Glândula Tireoide/efeitos da radiação , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/genética , Hipófise/metabolismo , Hipófise/efeitos da radiação , Hipotálamo/metabolismoRESUMO
PURPOSE: Many patients with Alzheimer's disease (AD) also have psychosis, and it has been reported that these patients have more severely impaired cognitive functions than patients without psychosis. The glutamatergic system in the brain is known to play an important role in memory and learning in the neural circuits. However, there has been limited research on how antipsychotic drugs affect the glutamatergic system of AD. Therefore, we aimed to investigate the effects of aripiprazole on the glutamatergic system in an animal model of AD using functional molecular imaging. PROCEDURES: In this study, 5xFAD mice were used as the animal model. At the age of 5 months, the mice were divided into wild-type, vehicle control, and aripiprazole-treated groups (n = 6 per group). The aripiprazole-treated group was administered aripiprazole for 2 months at a dose of 1 mg·kg-1·day-1. At 7 months of age, the animals underwent behavioral tests and glutamate positron emission tomography (PET) scans. RESULTS: The aripiprazole-treated group exhibited alleviated memory impairment in a novel object recognition test. Moreover, this group displayed 7-8% higher binding in the glutamate PET scan than the vehicle-treated 5xFAD group. Postmortem examination confirmed the recovery of glutamatergic damage. CONCLUSIONS: The administration of aripiprazole alleviated memory impairment and restored the damaged glutamatergic system in 5xFAD mice. Although the use of aripiprazole in AD patients may be a constraint in terms of safety, we confirmed the possibility that the administration of antipsychotic drugs can be effective in AD.
Assuntos
Aripiprazol , Ácido Glutâmico , Transtornos da Memória , Camundongos Transgênicos , Animais , Aripiprazol/farmacologia , Aripiprazol/uso terapêutico , Ácido Glutâmico/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Masculino , Tomografia por Emissão de Pósitrons , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêuticoRESUMO
Cachexia is associated with various diseases, such as heart disease, infectious disease, and cancer. In particular, cancer-associated cachexia (CAC) accounts for more than 20% of mortality in cancer patients worldwide. Adipose tissue in CAC is characterized by adipocyte atrophy, mainly due to excessively increased lipolysis and impairment of adipogenesis. CAC is well known for the loss of skeletal muscle mass and/or fat mass. CAC induces severe metabolic alterations, including protein, lipid, and carbohydrate metabolism. The objectives of this study were to evaluate the effects of bee wax (Apis mellifera L. 1758) (BW) extract on adipogenesis, lipolysis, and mitochondrial oxygen consumption through white adipocytes, 3T3-L1. To achieve this study, cancer-associated cachexia condition was established by incubation of 3T3-L1 with colon cancer cell line CT26 cultured media. BW extract recovered the reduced adipogenesis under cachectic conditions in CT26 media. Treatment of BW showed increasing lipid accumulation as well as adipogenic gene expression and its target gene during adipogenesis. The administration of BW to adipocytes could decrease lipolysis. Also, BW could significantly downregulated the mitochondrial fatty acid oxidation-related genes, oxygen consumption rate, and extracellular acidification rate. Our results suggest that BW could improve metabolic disorders such as CAC through the activation of adipogenesis and inhibition of lipolysis in adipocytes, although we need further validation in vivo CAC model to check the effects of BW extract. Therefore, BW extract supplements could be useful as an alternative medicine to reverse energy imbalances.
RESUMO
Adipogenesis is a process that differentiates new adipocytes from precursor cells and is tightly regulated by several factors, including many transcription factors and various post-translational modifications. Recently, new roles of adipogenesis have been suggested in various diseases. However, the molecular mechanisms and functional modulation of these adipogenic genes remain poorly understood. This review summarizes the regulatory factors and modulators of adipogenesis and discusses future research directions to identify novel mechanisms regulating adipogenesis and the effects of adipogenic regulators in pathological conditions. The master adipogenic transcriptional factors PPARγ and C/EBPα were identified along with other crucial regulatory factors such as SREBP, Kroxs, STAT5, Wnt, FOXO1, SWI/SNF, KLFs, and PARPs. These transcriptional factors regulate adipogenesis through specific mechanisms, depending on the adipogenic stage. However, further studies related to the in vivo role of newly discovered adipogenic regulators and their function in various diseases are needed to develop new potent therapeutic strategies for metabolic diseases and cancer.
Assuntos
Adipócitos , Adipogenia , Adipogenia/fisiologia , Humanos , Animais , Adipócitos/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão GênicaRESUMO
Population aging has increased the global prevalence of aging-related diseases, including cancer, sarcopenia, neurological disease, arthritis, and heart disease. Understanding aging, a fundamental biological process, has led to breakthroughs in several fields. Cellular senescence, evinced by flattened cell bodies, vacuole formation, and cytoplasmic granules, ubiquitously plays crucial roles in tissue remodeling, embryogenesis, and wound repair as well as in cancer therapy and aging. The lack of universal biomarkers for detecting and quantifying senescent cells, in vitro and in vivo, constitutes a major limitation. The applications and limitations of major senescence biomarkers, including senescence-associated ß-galactosidase staining, telomere shortening, cell-cycle arrest, DNA methylation, and senescence-associated secreted phenotypes are discussed. Furthermore, explore senotherapeutic approaches for aging-associated diseases and cancer. In addition to the conventional biomarkers, this review highlighted the in vitro, in vivo, and disease models used for aging studies. Further, technologies from the current decade including multi-omics and computational methods used in the fields of senescence and aging are also discussed in this review. Understanding aging-associated biological processes by using cellular senescence biomarkers can enable therapeutic innovation and interventions to improve the quality of life of older adults.
Assuntos
Envelhecimento , Biomarcadores , Senescência Celular , Humanos , Senescência Celular/fisiologia , Biomarcadores/metabolismo , Envelhecimento/metabolismo , Envelhecimento/genética , Animais , Encurtamento do Telômero , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fenótipo Secretor Associado à SenescênciaRESUMO
Late-onset hypogonadism (LOH) is an age-related disease in men characterized by decreased testosterone levels with symptoms such as decreased libido, erectile dysfunction, and depression. Thymus quinquecostatus Celakovski (TQC) is a plant used as a volatile oil in traditional medicine, and its bioactive compounds have anti-inflammatory potential. Based on this knowledge, the present study aimed to investigate the effects of TQC extract (TE) on LOH in TM3 Leydig cells and in an in vivo aging mouse model. The aqueous extract of T. quinquecostatus Celakovski (12.5, 25, and 50⯵g/mL concentrations) was used to measure parameters such as cell viability, testosterone level, body weight, and gene expression, via in vivo studies. Interestingly, TE increased testosterone levels in TM3 cells in a dose-dependent manner without affecting cell viability. Furthermore, TE significantly increased the expression of genes involved in the cytochrome P450 family (Cyp11a1, Cyp17a1, Cyp19a1, and Srd5a2), which regulate testosterone biosynthesis. In aging mouse models, TE increased testosterone levels without affecting body weight and testicular tissue weight tissue of an aging animal group. In addition, the high-dose TE-treated group (50â¯mg/kg) showed significantly increased expression of the cytochrome p450 enzymes, similar to the in vitro results. Furthermore, HPLC-MS analysis confirmed the presence of caffeic acid and rosmarinic acid as bioactive compounds in TE. Thus, the results obtained in the present study confirmed that TQC and its bioactive compounds can be used for LOH treatment to enhance testosterone production.
Assuntos
Envelhecimento , Extratos Vegetais , Testículo , Testosterona , Thymus (Planta) , Animais , Testosterona/sangue , Masculino , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Camundongos , Extratos Vegetais/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Thymus (Planta)/química , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Hipogonadismo/tratamento farmacológico , Modelos Animais de DoençasRESUMO
Metal-organic frameworks (MOFs) prepared from oligomeric or polymeric organic ligands have been studied and are termed oligoMOFs and polyMOFs, respectively. Herein, several oligoMOFs are described that have been prepared from branched oligomers with dendritic or star-like architectures. Branched oligomeric ligands with four (4(H2bdc)-b) or eight (8(H2bdc)-b) 1,4-benzene dicarboxylic acid (H2bdc) groups were prepared and used to synthesize isoreticular-type Zn(II)-based MOFs (IRMOF). A branched tetramer (4(H2bdc)-b) produced an oligoIRMOF-1 with improved ambient stability compared with IRMOF-1 or previously described oligoMOFs. To understand the effect of the ligand architecture, oligoIRMOFs were also prepared from a linear tetramer (4(H2bdc)-l). For a branched octamer (8(H2bdc)-b), it was found that the addition of an organic base was required to produce crystalline oligoIRMOFs. Multivariate MOFs (MTV-MOFs) could also be readily prepared with a combination of an octamer (8(H2bdc)-b) and H2bdc.
RESUMO
Agastache rugosa Kuntze (Lamiaceae; Labiatae), a medicinal and functional herb used to treat gastrointestinal diseases, grows well both on islands and inland areas in South Korea. Thus, we aimed to reveal the morphological and micromorphological differences between A. rugosa grown on island and inland areas and their pharmacological effects on gastritis in an animal model by combining morphological and mass spectrophotometric analyses. Morphological analysis showed that island A. rugosa had slightly smaller plants and leaves than inland plants; however, the density of all types of trichomes on the leaves, petioles, and stems of island A. rugosa was significantly higher than that of inland plants. The essential oil component analysis revealed that pulegone levels were substantially higher in island A. rugosa than in inland A. rugosa. Despite the differences between island and inland A. rugosa, treatment with both island and inland A. rugosa reduced gastric damages by more than 40% compared to the gastritis induction group. In addition, expression of inflammatory protein was reduced by about 30% by treatment of island and inland A. rugosa. The present study demonstrates quantitative differences in morphology and volatile components between island and inland plants; significant differences were not observed between the gastritis-inhibitory effects of island and inland A. rugosa, and the efficacy of island A. rugosa was found to be similar to that of A. rugosa grown in inland areas.
Assuntos
Agastache , Gastrite , Óleos Voláteis , Animais , Folhas de Planta , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Gastrite/induzido quimicamente , Gastrite/tratamento farmacológicoRESUMO
Asthma is a pulmonary disease induced by the inhalation of aeroallergens and subsequent inappropriate immune responses. Camellia sinensis (L.) Kuntze has been evaluated as an effective antioxidant supplement produced from bioactive compounds, including flavonoids. In this study, we aimed to determine the effects of Camellia sinensis (L.) Kuntze extract (CE) on ovalbumin-induced allergic asthma. The components of CE were analyzed using high-performance liquid chromatography (HPLC) chromatogram patterns, and asthmatic animal models were induced via ovalbumin treatment. The antioxidant and anti-inflammatory effects of CE were evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), and nitric oxide (NO) assays. Seven compounds were detected in the CE chromatogram. In the ovalbumin-induced mouse model, CE treatment significantly decreased the inflammation index in the lung tissue. CE also significantly decreased eosinophilia and the production of inflammatory cytokines and OVA-specific IgE in animals with asthma. Collectively, our results indicate that CE has anti-inflammatory and antioxidant activities, and that CE treatment suppresses asthmatic progression, including mucin accumulation, inflammation, and OVA-specific IgE production.
RESUMO
BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.
RESUMO
PURPOSE: This study investigated the effects of healthy lifestyle interventions (HLSIs) on health-related quality of life (HR-QoL) in childhood and adolescent cancer survivors (CACS). METHODS: Major databases were searched for English-language original articles published between January 1, 2000 and May 2, 2021. Randomized controlled trials (RCTs) and non-RCTs were included. Quality was assessed using the revised Cochrane risk-of-bias tool, and a meta-analysis was conducted using RevMan 5.3 software. RESULTS: Nineteen studies were included. Significant effects on HR-QoL were found for interventions using a multi-modal approach (exercise and education) (d=-0.46; 95% confidence interval [CI]=-0.84 to -0.07, p=.02), lasting not less than 6 months (d=-0.72; 95% CI=-1.15 to -0.29, p=.0010), and using a group approach (d=-0.46; 95% CI=-0.85 to -0.06, p=.02). Self-efficacy showed significant effects when HLSIs provided health education only (d=-0.55; 95% CI=-0.92 to -0.18; p=.003), lasted for less than 6 months (d=-0.40; 95% CI=-0.69 to -0.11, p=.006), and were conducted individually (d=-0.55; 95% CI=-0.92 to -0.18, p=.003). The physical outcomes (physical activity, fatigue, exercise capacity-VO2, exercise capacity-upper body, body mass index) revealed no statistical significance. CONCLUSION: Areas of HLSIs for CACS requiring further study were identified, and needs and directions of research for holistic health management were suggested.
RESUMO
Bojungikki-tang (BJIT) is a traditional herbal medicine used in Korea, Japan, and China to treat gastrointestinal disorders. In this study, we aimed to investigate whether BJIT has protective effects against radiation-induced intestinal injury and to predict the underlying therapeutic mechanisms and related pathways via network pharmacological analyses. BJIT was injected intraperitoneally (50 mg/kg body weight) to C3H/HeN mice at 36 and 12 h before exposure to partial abdominal irradiation (5 Gy and 13 Gy) to evaluate the apoptotic changes and the histological changes and variations in inflammatory cytokine mRNA levels in the jejunum, respectively. Through in silico network analysis, we predicted the mechanisms underlying BJIT-mediated regulation of radiation-induced intestinal injury. BJIT reduced the level of apoptosis in the jejunal crypts 12 h post 5-Gy irradiation. Histological assessment revealed intestinal morphological changes in irradiated mice 3.5 days post 13-Gy irradiation. Furthermore, BJIT decreased inflammatory cytokine levels following radiation exposure. Apoptosis, TNF, p53, VEGF, toll-like receptor, PPAR, PI3K-Akt, and MAPK signaling pathways, as well as inflammatory bowel disease (IBD), were found to be linked to the radioprotective effects of BJIT against intestinal injury. According to our results, BJIT exerted its potential protective effects by attenuating histopathological changes in jejunal crypts and suppressing inflammatory mediator levels. Therefore, BJIT is a potential therapeutic agent that can treat radiation-induced intestinal injury and its associated symptoms.
RESUMO
Cachexia is a devastating fat tissue and muscle wasting syndrome associated with every major chronic illness, including cancer, chronic obstructive pulmonary disease, kidney disease, AIDS, and heart failure. Despite two decades of intense research, cachexia remains under-recognized by oncologists. While numerous drug candidates have been proposed for cachexia treatment, none have achieved clinical success. Only a few drugs are approved by the FDA for cachexia therapy, but a very low success rate is observed among patients. Currently, the identification of drugs from herbal medicines is a frontier research area for many diseases. In this milieu, network pharmacology, transcriptomics, cheminformatics, and molecular docking approaches were used to identify potential bioactive compounds from herbal medicines for the treatment of cancer-related cachexia. The network pharmacology approach is used to select the 32 unique genes from 238 genes involved in cachexia-related pathways, which are targeted by 34 phytocompounds identified from 12 different herbal medicines used for the treatment of muscle wasting in many countries. Gene expression profiling and functional enrichment analysis are applied to decipher the role of unique genes in cancer-associated cachexia pathways. In addition, the pharmacological properties and molecular interactions of the phytocompounds were analyzed to find the target compounds for cachexia therapy. Altogether, combined omics and network pharmacology approaches were used in the current study to untangle the complex prognostic genes involved in cachexia and phytocompounds with anti-cachectic efficacy. However, further functional and experimental validations are required to confirm the efficacy of these phytocompounds as commercial drug candidates for cancer-associated cachexia.
Assuntos
Neoplasias , Plantas Medicinais , Humanos , Prognóstico , Caquexia/etiologia , Caquexia/genética , Simulação de Acoplamento Molecular , Farmacologia em Rede , Perfilação da Expressão Gênica , Extratos Vegetais , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genéticaRESUMO
High doses of ionizing radiation can cause cardiovascular diseases (CVDs); however, the effects of <100 mGy radiation on CVD remain underreported. Endothelial cells (ECs) play major roles in cardiovascular health and disease, and their function is reduced by stimuli such as chronic disease, metabolic disorders, and smoking. However, whether exposure to low-dose radiation results in the disruption of similar molecular mechanisms in ECs under diabetic and non-diabetic states remains largely unknown; we aimed to address this gap in knowledge through the molecular and functional characterization of primary human aortic endothelial cells (HAECs) derived from patients with type 2 diabetes (T2D-HAECs) and normal HAECs in response to low-dose radiation. To address these limitations, we performed RNA sequencing on HAECs and T2D-HAECs following exposure to 100 mGy of ionizing radiation and examined the transcriptome changes associated with the low-dose radiation. Compared with that in the non-irradiation group, low-dose irradiation induced 243 differentially expressed genes (DEGs) (133 down-regulated and 110 up-regulated) in HAECs and 378 DEGs (195 down-regulated and 183 up-regulated) in T2D-HAECs. We also discovered a significant association between the DEGs and the interferon (IFN)-I signaling pathway, which is associated with CVD by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein−protein network analysis, and module analysis. Our findings demonstrate the potential impact of low-dose radiation on EC functions that are related to the risk of CVD.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Aorta/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , TranscriptomaRESUMO
Caesalpinia eriostachys Benth. (CE) is native to the Mexico and multiple effects have been observed from several plants belonging to the same family. CE was subjected to extraction with 95% ethanol, and the components were isolated through column chromatography. The structure of the compound was elucidated based on nuclear magnetic resonance (NMR) spectral data, electron ionization-mass (EI-MS) spectroscopy, and liquid chromatography-mass (LC-MS) spectroscopy. In vivo antinociceptive studies were conducted using writhing, 5% formalin, tail-flick, hot-plate, and von Frey filament tests. The ethanolic extract showed a significant effect in the acetic acid-induced pain model and nociceptive behavior in the formalin model (second phase). In hot-plate test and tail-flick test, the results showed no difference compared to the control group. The results suggest that the ethanolic extract may act peripherally to reduce pain. In the streptozotocin (STZ)-induced pain model, the ethanolic extract showed significant effect in the von Frey test model. The n-Hex (Hexane) and MC (Methylene chloride) fractions and isolated compounds, ellagic acid and agathisflavone, showed increased effect. Based on these results, we confirmed that the CE ethanolic extract and their compounds, ellagic acid and agathisflavone, have antinociceptive effect on diabetes mellitus-induced pain. Furthermore, the results of this study might be valuable for identifying compounds with antinociceptive activity from natural products.
RESUMO
Ammonia is useful for the production of fertilizers and chemicals for modern technology, but its high toxicity and corrosiveness are harmful to the environment and human health. Here, we report the recyclable and tunable ammonia adsorption using a robust imidazolium-based MOF (JCM-1) that uptakes 5.7 mmol g-1 of NH3 at 298 K reversibly without structural deformation. Furthermore, a simple substitution of NO3 - with Cl- in a post-synthetic manner leads to an increase in the NH3 uptake capacity of JCM-1(Cl-) up to 7.2 mmol g-1.
RESUMO
BACKGROUND: Being diagnosed with cancer during childhood or adolescence can disrupt important periods in an individual's physical, psychosocial, and spiritual development and potentially reduce the quality of life (QOL) after treatment. Research is urgently required to improve the QOL for child and adolescent cancer survivors, and it is necessary to analyze the trends in prior research reported in international academic journals to identify knowledge structures. OBJECTIVE: This study aims to identify the main keywords based on network centrality, subgroups (clusters) of keyword networks by using a cohesion analysis method, and the main theme of child and adolescent cancer survivor-related research abstracts through topic modeling. This study also aims to label the subgroups by comparing the results of the cohesion and topic modeling. METHODS: A text network analysis method and topic modeling were used to explore the main trends in child and adolescent cancer survivor research by structuring a network of keyword (semantic morphemes) co-occurrence in the abstracts of articles published in 5 major web-based databases from 2016 to 2020. A total of 1677 child and adolescent cancer survivor-related studies were used for data analyses. Data selection, processing, and analyses were also conducted. RESULTS: The top 5 keywords in terms of degree and eigenvector centrality were risk, control interval, radiation, childhood cancer treatment, and diagnosis. Of the 1677 studies used for data analyses, cluster 1 included 780 (46.51%) documents under risk management, cluster 2 contained 557 (33.21%) articles under health-related QOL and supportive care, and cluster 3 consisted of 340 (20.27%) studies under cancer treatment and complications. CONCLUSIONS: This study is significant in that it confirms the knowledge structure based on the main keywords and cross-disciplinary trends in child and adolescent cancer survivor research published in the last 5 years worldwide. The primary goal of child and adolescent cancer survivor research is to prevent and manage the various aspects of the problems encountered during the transition to a normal life and to improve the overall QOL. To this end, it is necessary to further revitalize the study of the multidisciplinary team approach for the promotion of age-specific health behaviors and the development of intervention strategies with increased feasibility for child and adolescent cancer survivors.
Assuntos
Sobreviventes de Câncer , Neoplasias , Adolescente , Criança , Humanos , Internet , Motivação , Neoplasias/psicologia , Neoplasias/terapia , Qualidade de Vida , Sobreviventes/psicologiaRESUMO
We report a bottom-up approach to immobilize catalysts into MOFs, including copper halides and gold chloride in a predictable manner. Interestingly, the structures of MOFs bearing NHC metal complexes maintained a similar 4-fold interpenetrated cube. They exhibited exceptionally high porosity despite the interpenetrated structure and showed good stability in various solvents. Moreover, these MOFs possess high size activity depending on the size of the substrates in various reactions, compared to homogeneous catalysis. Also, the high catalytic activity of MOFs can be preserved 4 times without significant loss of crystallinity. Incorporation of the various metal complexes into MOFs allows for the preparation of functional MOFs for practical applications.
RESUMO
Bamboo salt has anti-allergic, anti-inflammatory, anti-oxidant, diabetics, anti-aging, and immune-enhancing effects, which are closely related to anti-cancer effect. The aim of this study was to investigate the anti-cancer effects of Sambou bamboo saltTM (SBS) in melanoma skin cancer in vivo and in vitro models. SBS-administered mice effectively reduced tumor growth and increased survival rate compared with B16F10 cell-inoculated mice without tissue damage, hepatotoxicity, and nephrotoxicity. SBS enhanced levels of immune-enhancing mediators, such as interferon-γ, interleukin (IL)-2, IL-6, IL-12, tumor necrosis factor-α, and IgE in serum and melanoma tissues. Furthermore, SBS enhanced activities of caspases and levels of Bax and p53, whereas decreased levels of Bcl-2. This reduction was a consequence of apoptosis signaling pathway. In conclusion, these results suggest that SBS is a potential substance for cancer therapy. SBS has the potential to be developed either as Korean traditional medicine or as a health functional food for cancer therapy. PRACTICAL APPLICATIONS: In these days cancer is one of the world's largest health problems. Bamboo salt is used as a Korean traditional food or medicine and has beneficial effect on inflammation. We have identified Sambou bamboo saltTM (SBS) is a potential substance for cancer therapy. These insights suggest that SBS can potentially be utilized for health functional foods for cancer treatment as well as improve various cancer diseases such as melanoma skin cancer.
Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Apoptose , Melanoma/tratamento farmacológico , Camundongos , Neoplasias Cutâneas/tratamento farmacológico , Cloreto de Sódio na DietaRESUMO
Arthritis is a common condition that causes pain and inflammation in a joint. Previously, we reported that the mixture extract (ME) from Agrimonia pilosa Ledeb. (AP) and Salvia miltiorrhiza Bunge (SM) could ameliorate gout arthritis. In the present study, we aimed to investigate the potential anti-inflammatory and antinociceptive effects of ME and characterize the mechanism. We compared the anti-inflammatory and antinociceptive effects of a positive control, Perna canaliculus powder (PC). The results showed that one-off and one-week treatment of ME reduced the pain threshold in a dose-dependent manner (from 10 to 100 mg/kg) in the mono-iodoacetate (MIA)-induced osteoarthritis (OA) model. ME also reduced the plasma TNF-α, IL-6, and CRP levels. In LPS-stimulated RAW 264.7 cells, ME inhibited the release of NO, PGE2, LTB4, and IL-6, increased the phosphorylation of PPAR-γ protein, and downregulated TNF-α and MAPKs proteins expression in a concentration-dependent (from 1 to 100 µg/mL) manner. Furthermore, ME ameliorated the progression of ear edema in mice. In most of the experiments, ME-induced effects were almost equal to, or were higher than, PC-induced effects. Conclusions: The data presented here suggest that ME shows anti-inflammatory and antinociceptive activities, indicating ME may be a potential therapeutic for arthritis treatment.