Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BioDrugs ; 37(2): 271-277, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719640

RESUMO

BACKGROUND: Biologics, regardless of whether they are biosimilars or reference products, are inherently variable due to their size, complexity, and the manufacturing process involved to produce them. Since a drift or evolution of quality attributes of a biologic may impact its clinical safety or efficacy, it is critical for the manufacturer to carefully control the manufacturing process and monitor the quality attributes of a biologic. OBJECTIVE: The aim of this study was to demonstrate that the quality profile of the SB5 drug product has been consistent over its production history from 2013 to 2022. SB5 is a biosimilar referencing adalimumab (Humira, trademark of AbbVie Biotechnology Ltd) and SB5 has been approved by 14 regulatory authorities including the European Commission in August 2017 (brand name Imraldi™) and the US Food and Drug Administration in July 2019 (brand name Hadlima™). METHODS: A total of 93 SB5 drug product batches manufactured between 2013 and 2022 were analyzed for a series of release parameters to evaluate the consistency in their critical quality attributes including purity, charge variants, and functional activities (TNF-α binding activity and TNF-α neutralizing potency). RESULTS: The purity, charge variants, and functional activities of all batches were consistent over time and within the stringent acceptance criteria defined by regulatory agencies to ensure the safety and efficacy of SB5. CONCLUSION: The data presented in this study provide evidence that the quality of SB5 has remained consistent and tightly controlled even through process changes such as manufacturing site transfers and change in formulation.


Assuntos
Medicamentos Biossimilares , Humanos , Adalimumab/uso terapêutico , Medicamentos Biossimilares/uso terapêutico , Fator de Necrose Tumoral alfa
2.
Front Immunol ; 12: 741938, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745114

RESUMO

T helper 17 (TH17) cells are involved in several autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA). In addition to retinoic acid receptor-related orphan nuclear receptor gamma t (ROR-γt), hypoxia-inducible factor-1α (HIF-1α) is essential for the differentiation and inflammatory function of TH17 cells. To investigate the roles of HIF-1α in the functional regulation of TH17 cells under the normal physiological condition without genetic modification, the nucleus-transducible form of transcription modulation domain (TMD) of HIF-1α (ntHIF-1α-TMD) was generated by conjugating HIF-1α-TMD to Hph-1 protein transduction domain (PTD). ntHIF-1α-TMD was effectively delivered into the nucleus of T cells without cellular cytotoxicity. ntHIF-1α-TMD significantly blocked the differentiation of naïve T cells into TH17 cells in a dose-dependent manner via IL-17A and ROR-γt expression inhibition. However, T-cell activation events such as induction of CD69, CD25, and IL-2 and the differentiation potential of naïve T cells into TH1, TH2, or Treg cells were not affected by ntHIF-1α-TMD. Interestingly, TH17 cells differentiated from naïve T cells in the presence of ntHIF-1α-TMD showed a substantial level of suppressive activity toward the activated T cells, and the increase of Foxp3 and IL-10 expression was detected in these TH17 cells. When mRNA expression pattern was compared between TH17 cells and ntHIF-1α-TMD-treated TH17 cells, the expression of the genes involved in the differentiation and functions of TH17 cells was downregulated, and that of the genes necessary for immune-suppressive functions of Treg cells was upregulated. When the mice with experimental autoimmune encephalomyelitis (EAE) were treated with ntHIF-1α-TMD with anti-IL-17A mAb as a positive control, the therapeutic efficacy of ntHIF-1α-TMD in vivo was comparable with that of anti-IL-17A mAb, and ntHIF-1α-TMD-mediated therapeutic effect was contributed by the functional conversion of TH17 cells into immune-suppressive T cells. The results in this study demonstrate that ntHIF-1α-TMD can be a new therapeutic reagent for the treatment of various autoimmune diseases in which TH17 cells are dominant and pathogenic T cells.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
3.
Molecules ; 24(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791543

RESUMO

Patients with uncontrolled diabetes are susceptible to implant failure due to impaired bone metabolism. Hypoxia-inducible factor 1α (HIF-1α), a transcription factor that is up-regulated in response to reduced oxygen during bone repair, is known to mediate angiogenesis and osteogenesis. However, its function is inhibited under hyperglycemic conditions in diabetic patients. This study thus evaluates the effects of exogenous HIF-1α on bone formation around implants by applying HIF-1α to diabetic mice and normal mice via a protein transduction domain (PTD)-mediated DNA delivery system. Implants were placed in the both femurs of diabetic and normal mice. HIF-1α and placebo gels were injected to implant sites of the right and left femurs, respectively. We found that bone-to-implant contact (BIC) and bone volume (BV) were significantly greater in the HIF-1α treated group than placebo in diabetic mice (p < 0.05). Bioinformatic analysis showed that diabetic mice had 216 differentially expressed genes (DEGs) and 21 target genes. Among the target genes, NOS2, GPNMB, CCL2, CCL5, CXCL16, and TRIM63 were found to be associated with bone formation. Based on these results, we conclude that local administration of HIF-1α via PTD may boost bone formation around the implant and induce gene expression more favorable to bone formation in diabetic mice.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Implantes Dentários , Diabetes Mellitus Experimental , Subunidade alfa do Fator 1 Induzível por Hipóxia/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Osteogênese/genética , Permeabilidade
4.
Mol Cell Biochem ; 437(1-2): 99-107, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28660411

RESUMO

Hypoxia-inducible factor-1 alpha (HIF1A) is an important transcription factor for angiogenesis. Recent studies have used the protein transduction domain (PTD) to deliver genes, but the PTD has not been used to induce the expression of HIF1A. This study aimed at using a novel PTD (Hph-1-GAL4; ARVRRRGPRR) to overexpress the HIF1A and identify the effects on angiogenesis in vitro and in vivo. Overexpression of HIF1A was induced using Hph-1-GAL4 in human umbilical vein/vascular endothelium cells (HUVEC). The expression levels of genes were analyzed by the quantitative real-time polymerase chain reaction (qPCR) after 2 and 4 days, respectively. An in vitro tube formation was performed using Diff-Quik staining. HIF1A and Hph-1-GAL4 were injected subcutaneously into the ventral area of each 5-week-old mouse. All of the plugs were retrieved after 1 week, and the gene expression levels were evaluated by qPCR. Each Matrigel plug was evaluated using the hemoglobin assay and hematoxylin and eosin (HE) staining. The expression levels of HIF1A and HIF1A target genes were significantly higher in HIF1A-transfected HUVEC than in control HUVEC in vitro. In the in vivo Matrigel plug assay, the amount of hemoglobin was significantly higher in the HIF1A-treatment group than in the PBS-treatment group. Blood vessels were identified in the HIF1A-treatment group. The expression levels of HIF1A, vascular endothelial growth factor (Vegf), and Cd31 were significantly higher in the HIF1A-treatment group than in the PBS-treatment group. These findings suggest that using Hph-1-G4D to overexpress HIF1A might be useful for transferring genes and regenerating tissues.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Neovascularização Fisiológica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA