Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
JCI Insight ; 9(11)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855866

RESUMO

TANGO2-deficiency disorder (TDD) is an autosomal-recessive genetic disease caused by biallelic loss-of-function variants in the TANGO2 gene. TDD-associated cardiac arrhythmias are recalcitrant to standard antiarrhythmic medications and constitute the leading cause of death. Disease modeling for TDD has been primarily carried out using human dermal fibroblast and, more recently, in Drosophila by multiple research groups. No human cardiomyocyte system has been reported, which greatly hinders the investigation and understanding of TDD-associated arrhythmias. Here, we established potentially novel patient-derived induced pluripotent stem cell differentiated cardiomyocyte (iPSC-CM) models that recapitulate key electrophysiological abnormalities in TDD. These electrophysiological abnormalities were rescued in iPSC-CMs with either adenoviral expression of WT-TANGO2 or correction of the pathogenic variant using CRISPR editing. Our natural history study in patients with TDD suggests that the intake of multivitamin/B complex greatly diminished the risk of cardiac crises in patients with TDD. In agreement with the clinical findings, we demonstrated that high-dose folate (vitamin B9) virtually abolishes arrhythmias in TDD iPSC-CMs and that folate's effect was blocked by the dihydrofolate reductase inhibitor methotrexate, supporting the need for intracellular folate to mediate antiarrhythmic effects. In summary, data from TDD iPSC-CM models together with clinical observations support the use of B vitamins to mitigate cardiac crises in patients with TDD, providing potentially life-saving treatment strategies during life-threatening events.


Assuntos
Arritmias Cardíacas , Ácido Fólico , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Masculino , Feminino , Criança
2.
Stem Cell Res ; 74: 103292, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154383

RESUMO

MECP2 Duplication Syndrome (MDS) is a rare, severe neurodevelopmental disorder arising from duplications in the Xq28 region containing the MECP2 gene that predominantly affects males. We generated five human induced pluripotent stem cell (iPSC) lines from the fibroblasts of individuals carrying between 0.355 and 11.2 Mb size duplications in the chromosomal locus containing MECP2. All lines underwent extensive testing to confirm MECP2 duplication and iPSC-related features such as morphology, pluripotency markers, and trilineage differentiation potential. These lines are a valuable resource for molecular and functional studies of MDS as well as screening for a variety of therapeutic approaches.


Assuntos
Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual Ligada ao Cromossomo X , Proteína 2 de Ligação a Metil-CpG , Humanos , Masculino , Diferenciação Celular , Duplicação Gênica , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína 2 de Ligação a Metil-CpG/genética
3.
Genes Dev ; 37(19-20): 883-900, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890975

RESUMO

Loss-of-function mutations in MECP2 cause Rett syndrome (RTT), a severe neurological disorder that mainly affects girls. Mutations in MECP2 do occur in males occasionally and typically cause severe encephalopathy and premature lethality. Recently, we identified a missense mutation (c.353G>A, p.Gly118Glu [G118E]), which has never been seen before in MECP2, in a young boy who suffered from progressive motor dysfunction and developmental delay. To determine whether this variant caused the clinical symptoms and study its functional consequences, we established two disease models, including human neurons from patient-derived iPSCs and a knock-in mouse line. G118E mutation partially reduces MeCP2 abundance and its DNA binding, and G118E mice manifest RTT-like symptoms seen in the patient, affirming the pathogenicity of this mutation. Using live-cell and single-molecule imaging, we found that G118E mutation alters MeCP2's chromatin interaction properties in live neurons independently of its effect on protein levels. Here we report the generation and characterization of RTT models of a male hypomorphic variant and reveal new insight into the mechanism by which this pathological mutation affects MeCP2's chromatin dynamics. Our ability to quantify protein dynamics in disease models lays the foundation for harnessing high-resolution single-molecule imaging as the next frontier for developing innovative therapies for RTT and other diseases.


Assuntos
Cromatina , Síndrome de Rett , Feminino , Humanos , Masculino , Camundongos , Animais , Cromatina/metabolismo , Encéfalo/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Mutação , Neurônios/metabolismo
4.
Nat Cell Biol ; 25(4): 528-539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024683

RESUMO

Upon stimulation by extrinsic stimuli, stem cells initiate a programme that enables differentiation or self-renewal. Disruption of the stem state exit has catastrophic consequences for embryogenesis and can lead to cancer. While some elements of this stem state switch are known, major regulatory mechanisms remain unclear. Here we show that this switch involves a global increase in splicing efficiency coordinated by DNA methyltransferase 3α (DNMT3A), an enzyme typically involved in DNA methylation. Proper activation of murine and human embryonic and haematopoietic stem cells depends on messenger RNA processing, influenced by DNMT3A in response to stimuli. DNMT3A coordinates splicing through recruitment of the core spliceosome protein SF3B1 to RNA polymerase and mRNA. Importantly, the DNA methylation function of DNMT3A is not required and loss of DNMT3A leads to impaired splicing during stem cell turnover. Finally, we identify the spliceosome as a potential therapeutic target in DNMT3A-mutated leukaemias. Together, our results reveal a modality through which DNMT3A and the spliceosome govern exit from the stem state towards differentiation.


Assuntos
DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Animais , Humanos , Camundongos , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células-Tronco Hematopoéticas/metabolismo
5.
CRISPR J ; 6(2): 176-182, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071670

RESUMO

The CRISPR-Cas9 system has enabled researchers to precisely modify/edit the sequence of a genome. A typical editing experiment consists of two steps: (1) editing cultured cells; (2) cell cloning and selection of clones with and without intended edit, presumed to be isogenic. The application of CRISPR-Cas9 system may result in off-target edits, whereas cloning will reveal culture-acquired mutations. We analyzed the extent of the former and the latter by whole genome sequencing in three experiments involving separate genomic loci and conducted by three independent laboratories. In all experiments we hardly found any off-target edits, whereas detecting hundreds to thousands of single nucleotide mutations unique to each clone after relatively short culture of 10-20 passages. Notably, clones also differed in copy number alterations (CNAs) that were several kb to several mb in size and represented the largest source of genomic divergence among clones. We suggest that screening of clones for mutations and CNAs acquired in culture is a necessary step to allow correct interpretation of DNA editing experiments. Furthermore, since culture associated mutations are inevitable, we propose that experiments involving derivation of clonal lines should compare a mix of multiple unedited lines and a mix of multiple edited lines.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Mutação , DNA
6.
J Proteomics ; 262: 104596, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35489683

RESUMO

Epigenetic variation plays a significant role in normal development and human diseases including cancer, in part through post-translational modifications (PTMs) of histones. Identification and profiling of changes in histone PTMs, and in proteins regulating PTMs, are crucial to understanding diseases, and for discovery of epigenetic therapeutic agents. In this study, we have adapted and validated an antibody-based reverse phase protein array (RPPA) platform for profiling 20 histone PTMs and expression of 40 proteins that modify histones and other epigenomic regulators. The specificity of the RPPA assay for histone PTMs was validated with synthetic peptides corresponding to histone PTMs and by detection of histone PTM changes in response to inhibitors of histone modifier proteins in cell cultures. The useful application of the RPPA platform was demonstrated with two models: induction of pluripotent stem cells and a mouse mammary tumor progression model. Described here is a robust platform that includes a rapid microscale method for histone isolation and partially automated workflows for analysis of histone PTMs and histone modifiers that can be performed in a high-throughput manner with hundreds of samples. This RPPA platform has potential for translational applications through the discovery and validation of epigenetic states as therapeutic targets and biomarkers. SIGNIFICANCE: Our study has established an antibody-based reverse phase protein array platform for global profiling of a wide range of post-translational modifications of histones and histone modifier proteins. The high-throughput platform provides comprehensive analyses of epigenetics for biological research and disease studies and may serve as screening assay for diagnostic purpose or therapy development.


Assuntos
Histonas , Análise Serial de Proteínas , Animais , Cromatina , Epigênese Genética , Histonas/metabolismo , Camundongos , Análise Serial de Proteínas/métodos , Processamento de Proteína Pós-Traducional
7.
Haematologica ; 107(4): 887-898, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34092059

RESUMO

Tatton-Brown-Rahman syndrome (TBRS) is an overgrowth disorder caused by germline heterozygous mutations in the DNA methyltransferase DNMT3A. DNMT3A is a critical regulator of hematopoietic stem cell (HSC) differentiation and somatic DNMT3A mutations are frequent in hematologic malignancies and clonal hematopoiesis. Yet, the impact of constitutive DNMT3A mutation on hematopoiesis in TBRS is undefined. In order to establish how constitutive mutation of DNMT3A impacts blood development in TBRS we gathered clinical data and analyzed blood parameters in 18 individuals with TBRS. We also determined the distribution of major peripheral blood cell lineages by flow cytometric analyses. Our analyses revealed non-anemic macrocytosis, a relative decrease in lymphocytes and increase in neutrophils in TBRS individuals compared to unaffected controls. We were able to recapitulate these hematologic phenotypes in multiple murine models of TBRS and identified rare hematological and non-hematological malignancies associated with constitutive Dnmt3a mutation. We further show that loss of DNMT3A in TBRS is associated with an altered DNA methylation landscape in hematopoietic cells affecting regions critical to stem cell function and tumorigenesis. Overall, our data identify key hematopoietic effects driven by DNMT3A mutation with clinical implications for individuals with TBRS and DNMT3A-associated clonal hematopoiesis or malignancies.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Deficiência Intelectual , Animais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Células Germinativas/patologia , Hematopoese/genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Camundongos
8.
Nat Commun ; 12(1): 5579, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552088

RESUMO

Expression of a few master transcription factors can reprogram the epigenetic landscape and three-dimensional chromatin topology of differentiated cells and achieve pluripotency. During reprogramming, thousands of long-range chromatin contacts are altered, and changes in promoter association with enhancers dramatically influence transcription. Molecular participants at these sites have been identified, but how this re-organization might be orchestrated is not known. Biomolecular condensation is implicated in subcellular organization, including the recruitment of RNA polymerase in transcriptional activation. Here, we show that reprogramming factor KLF4 undergoes biomolecular condensation even in the absence of its intrinsically disordered region. Liquid-liquid condensation of the isolated KLF4 DNA binding domain with a DNA fragment from the NANOG proximal promoter is enhanced by CpG methylation of a KLF4 cognate binding site. We propose KLF4-mediated condensation as one mechanism for selectively organizing and re-organizing the genome based on the local sequence and epigenetic state.


Assuntos
Reprogramação Celular , Cromatina/metabolismo , DNA/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , DNA/química , DNA/genética , Metilação de DNA , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/genética , Modelos Moleculares , Mutação , Proteína Homeobox Nanog/genética , Fator 3 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição SOXB1/genética , Dedos de Zinco/genética
9.
Adv Sci (Weinh) ; 8(19): e2005047, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365742

RESUMO

Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.


Assuntos
Carcinogênese/metabolismo , Diferenciação Celular/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Fator 1 de Modelagem da Cromatina/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Nus , Neuroblastoma/genética , Peixe-Zebra
10.
J Cell Mol Med ; 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110090

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited cardiac arrhythmia syndrome that often leads to sudden cardiac death. The most common form of CPVT is caused by autosomal-dominant variants in the cardiac ryanodine receptor type-2 (RYR2) gene. Mutations in RYR2 promote calcium (Ca2+ ) leak from the sarcoplasmic reticulum (SR), triggering lethal arrhythmias. Recently, it was demonstrated that tetracaine derivative EL20 specifically inhibits mutant RyR2, normalizes Ca2+ handling and suppresses arrhythmias in a CPVT mouse model. The objective of this study was to determine whether EL20 normalizes SR Ca2+ handling and arrhythmic events in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from a CPVT patient. Blood samples from a child carrying RyR2 variant RyR2 variant Arg-176-Glu (R176Q) and a mutation-negative relative were reprogrammed into iPSCs using a Sendai virus system. iPSC-CMs were derived using the StemdiffTM kit. Confocal Ca2+ imaging was used to quantify RyR2 activity in the absence and presence of EL20. iPSC-CMs harbouring the R176Q variant demonstrated spontaneous SR Ca2+ release events, whereas administration of EL20 diminished these abnormal events at low nanomolar concentrations (IC50  = 82 nM). Importantly, treatment with EL20 did not have any adverse effects on systolic Ca2+ handling in control iPSC-CMs. Our results show for the first time that tetracaine derivative EL20 normalized SR Ca2+ handling and suppresses arrhythmogenic activity in iPSC-CMs derived from a CPVT patient. Hence, this study confirms that this RyR2-inhibitor represents a promising therapeutic candidate for treatment of CPVT.

11.
Nat Cell Biol ; 22(11): 1332-1345, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106653

RESUMO

Dystrophin proteomic regulation in muscular dystrophies (MDs) remains unclear. We report that a long noncoding RNA (lncRNA), H19, associates with dystrophin and inhibits E3-ligase-dependent polyubiquitination at Lys 3584 (referred to as Ub-DMD) and its subsequent protein degradation. In-frame deletions in BMD and a DMD non-silent mutation (C3340Y) resulted in defects in the ability of the protein to interact with H19, which caused elevated Ub-DMD levels and dystrophin degradation. Dmd C3333Y mice exhibited progressive MD, elevated serum creatine kinase, heart dilation, blood vessel irregularity and respiratory failure with concurrently reduced dystrophin and increased Ub-DMD status. H19 RNA oligonucleotides conjugated with agrin (AGR-H19) and nifenazone competed with or inhibited TRIM63. Dmd C3333Y animals, induced-pluripotent-stem-cell-derived skeletal muscle cells from patients with Becker MD and mdx mice subjected to exon skipping exhibited inhibited dystrophin degradation, preserved skeletal and cardiac muscle histology, and improved strength and heart function following AGR-H19 or nifenazone treatment. Our study paves the way for meaningful targeted therapeutics for Becker MD and for certain patients with Duchenne MD.


Assuntos
Músculo Esquelético/metabolismo , Distrofias Musculares/prevenção & controle , Oligonucleotídeos/administração & dosagem , RNA Longo não Codificante/metabolismo , Animais , Antipirina/administração & dosagem , Antipirina/análogos & derivados , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/prevenção & controle , Linhagem Celular , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Inibidores Enzimáticos/administração & dosagem , Feminino , Meia-Vida , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Mutantes , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/metabolismo , Força Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Estabilidade Proteica , Proteólise , RNA Longo não Codificante/genética , Proteínas com Motivo Tripartido/antagonistas & inibidores , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
Science ; 366(6467): 843-849, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727829

RESUMO

Down syndrome (DS) is the most common genetic cause of intellectual disability. Protein homeostasis is essential for normal brain function, but little is known about its role in DS pathophysiology. In this study, we found that the integrated stress response (ISR)-a signaling network that maintains proteostasis-was activated in the brains of DS mice and individuals with DS, reprogramming translation. Genetic and pharmacological suppression of the ISR, by inhibiting the ISR-inducing double-stranded RNA-activated protein kinase or boosting the function of the eukaryotic translation initiation factor eIF2-eIF2B complex, reversed the changes in translation and inhibitory synaptic transmission and rescued the synaptic plasticity and long-term memory deficits in DS mice. Thus, the ISR plays a crucial role in DS, which suggests that tuning of the ISR may provide a promising therapeutic intervention.


Assuntos
Síndrome de Down/fisiopatologia , Síndrome de Down/psicologia , Plasticidade Neuronal , Proteostase/fisiologia , Estresse Fisiológico/fisiologia , Transmissão Sináptica , Animais , Encéfalo/fisiopatologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Memória de Longo Prazo , Camundongos , Camundongos Mutantes , Biossíntese de Proteínas , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
13.
PLoS One ; 14(2): e0212553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30789962

RESUMO

Rett syndrome (RTT) is a pervasive developmental disorder caused by mutations in MECP2. Complete loss of MECP2 function in males causes congenital encephalopathy, neurodevelopmental arrest, and early lethality. Induced pluripotent stem cell (iPSC) lines from male patients harboring mutations in MECP2, along with control lines from their unaffected fathers, give us an opportunity to identify some of the earliest cellular and molecular changes associated with MECP2 loss-of-function (LOF). We differentiated iPSC-derived neural progenitor cells (NPCs) using retinoic acid (RA) and found that astrocyte differentiation is perturbed in iPSC lines derived from two different patients. Using highly stringent quantitative proteomic analyses, we found that LIN28, a gene important for cell fate regulation and developmental timing, is upregulated in mutant NPCs compared to WT controls. Overexpression of LIN28 protein in control NPCs suppressed astrocyte differentiation and reduced neuronal synapse density, whereas downregulation of LIN28 expression in mutant NPCs partially rescued this synaptic deficiency. These results indicate that the pathophysiology of RTT may be caused in part by misregulation of developmental timing in neural progenitors, and the subsequent consequences of this disruption on neuronal and glial differentiation.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Proteína 2 de Ligação a Metil-CpG/genética , Neuroglia/citologia , Proteínas de Ligação a RNA/genética , Diferenciação Celular , Linhagem Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação com Perda de Função , Masculino , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Proteômica
14.
ACS Synth Biol ; 8(1): 25-33, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30550267

RESUMO

Nondestructive measurements of cell persistence and gene expression are crucial for longitudinal research studies and for prognostic assessment of cell therapies. Here we describe S-MiRAGE, a platform that utilizes small secreted RNA molecules as sensitive and quantitatively accurate reporters of cellular processes. S-MiRAGE allows cellular numbers or gene expression to be measured from culture media or from biofluids. We show that multiple S-MiRAGE reporters can be multiplexed, and demonstrate the utility of S-MiRAGE by monitoring the differentiation status of human embryonic stem cells in vitro and tumor growth in a mouse model in vivo.


Assuntos
Genes Reporter/genética , RNA/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Reprogramação Celular/genética , Expressão Gênica/genética , Expressão Gênica/fisiologia , Humanos , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Stem Cell Res ; 32: 145-149, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30296667

RESUMO

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of a clinically diagnosed AD patient [ASUi005-A] and a non-demented control (NDC) patient [ASUi006-A] homozygous for the APOE4 risk allele. These hiPSCs maintained their original genotype, expressed pluripotency markers, exhibited a normal karyotype, and retained the ability to differentiate into cells representative of the three germ layers. Resource table.


Assuntos
Apolipoproteína E4/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Células Cultivadas , Genótipo , Homozigoto , Humanos
16.
J Neurosci ; 38(43): 9286-9301, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30249792

RESUMO

Accumulation of α-Synuclein (α-Syn) causes Parkinson's disease (PD) as well as other synucleopathies. α-Syn is the major component of Lewy bodies and Lewy neurites, the proteinaceous aggregates that are a hallmark of sporadic PD. In familial forms of PD, mutations or copy number variations in SNCA (the α-Syn gene) result in a net increase of its protein levels. Furthermore, common risk variants tied to PD are associated with small increases of wild-type α-Syn levels. These findings are further bolstered by animal studies which show that overexpression of α-Syn is sufficient to cause PD-like features. Thus, increased α-Syn levels are intrinsically tied to PD pathogenesis and underscore the importance of identifying the factors that regulate its levels. In this study, we establish a pooled RNAi screening approach and validation pipeline to probe the druggable genome for modifiers of α-Syn levels and identify 60 promising targets. Using a cross-species, tiered validation approach, we validate six strong candidates that modulate α-Syn levels and toxicity in cell lines, Drosophila, human neurons, and mouse brain of both sexes. More broadly, this genetic strategy and validation pipeline can be applied for the identification of therapeutic targets for disorders driven by dosage-sensitive proteins.SIGNIFICANCE STATEMENT We present a research strategy for the systematic identification and validation of genes modulating the levels of α-Synuclein, a protein involved in Parkinson's disease. A cell-based screen of the druggable genome (>7,500 genes that are potential therapeutic targets) yielded many modulators of α-Synuclein that were subsequently confirmed and validated in Drosophila, human neurons, and mouse brain. This approach has broad applicability to the multitude of neurological diseases that are caused by mutations in genes whose dosage is critical for brain function.


Assuntos
Genoma/genética , Neurônios/fisiologia , Interferência de RNA/fisiologia , Análise de Sequência de RNA/métodos , alfa-Sinucleína/genética , Animais , Animais Recém-Nascidos , Drosophila , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Reprodutibilidade dos Testes , Especificidade da Espécie
17.
Am J Hum Genet ; 103(2): 276-287, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075114

RESUMO

Primary hypertension is a major risk factor for ischemic heart disease, stroke, and chronic kidney disease. Insights obtained from the study of rare Mendelian forms of hypertension have been invaluable in elucidating the mechanisms causing primary hypertension and development of antihypertensive therapies. Endothelial cells play a key role in the regulation of blood pressure; however, a Mendelian form of hypertension that is primarily due to endothelial dysfunction has not yet been described. Here, we show that the urea cycle disorder, argininosuccinate lyase deficiency (ASLD), can manifest as a Mendelian form of endothelial-dependent hypertension. Using data from a human clinical study, a mouse model with endothelial-specific deletion of argininosuccinate lyase (Asl), and in vitro studies in human aortic endothelial cells and induced pluripotent stem cell-derived endothelial cells from individuals with ASLD, we show that loss of ASL in endothelial cells leads to endothelial-dependent vascular dysfunction with reduced nitric oxide (NO) production, increased oxidative stress, and impaired angiogenesis. Our findings show that ASLD is a unique model for studying NO-dependent endothelial dysfunction in human hypertension.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Células Endoteliais/patologia , Hipertensão/genética , Adolescente , Animais , Pressão Sanguínea/genética , Células Cultivadas , Criança , Modelos Animais de Doenças , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/genética , Óxido Nítrico/genética , Estresse Oxidativo/genética , Distúrbios Congênitos do Ciclo da Ureia/genética
18.
Stem Cell Res ; 25: 266-269, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29246571

RESUMO

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of a clinically diagnosed AD patient [ASUi003-A] and a non-demented control (NDC) patient [ASUi004-A] homozygous for the APOE4 risk allele. These hiPSCs maintained their original genotype, expressed pluripotency markers, exhibited a normal karyotype, and retained the ability to differentiate into cells representative of the three germ layers.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/genética , Células-Tronco Pluripotentes Induzidas/citologia , Idoso , Alelos , Doença de Alzheimer/metabolismo , Apolipoproteína E4/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Genótipo , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Mutação
19.
Am J Hum Genet ; 101(6): 874-887, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29129316

RESUMO

Copy-number variants (CNVs) of chromosome 15q13.3 manifest clinically as neuropsychiatric disorders with variable expressivity. CHRNA7, encoding for the α7 nicotinic acetylcholine receptor (nAChR), has been suggested as a candidate gene for the phenotypes observed. Here, we used induced pluripotent stem cells (iPSCs) and neural progenitor cells (NPCs) derived from individuals with heterozygous 15q13.3 deletions and heterozygous 15q13.3 duplications to investigate the CHRNA7-dependent molecular consequences of the respective CNVs. Unexpectedly, both deletions and duplications lead to decreased α7 nAChR-associated calcium flux. For deletions, this decrease in α7 nAChR-dependent calcium flux is expected due to haploinsufficiency of CHRNA7. For duplications, we found that increased expression of CHRNA7 mRNA is associated with higher expression of nAChR-specific and resident ER chaperones, indicating increased ER stress. This is likely a consequence of inefficient chaperoning and accumulation of α7 subunits in the ER, as opposed to being incorporated into functional α7 nAChRs at the cell membrane. Here, we showed that α7 nAChR-dependent calcium signal cascades are downregulated in both 15q13.3 deletion and duplication NPCs. While it may seem surprising that genomic changes in opposite direction have consequences on downstream pathways that are in similar direction, it aligns with clinical data, which suggest that both individuals with deletions and duplications of 15q13.3 manifest neuropsychiatric disease and cognitive deficits.


Assuntos
Sinalização do Cálcio/genética , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA/genética , Estresse do Retículo Endoplasmático/genética , Dosagem de Genes/genética , Células-Tronco Pluripotentes Induzidas/citologia , Deficiência Intelectual/genética , Células-Tronco Neurais/citologia , Convulsões/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Receptor Nicotínico de Acetilcolina alfa7/biossíntese
20.
Stem Cell Res ; 24: 160-163, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29034886

RESUMO

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic, multiple genetic risk variants have been identified, the most powerful and prevalent of which is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of a clinically diagnosed AD patient [ASUi001-A] and a non-demented control (NDC) patient [ASUi002-A] homozygous for the APOE4 risk allele. These hiPSCs maintained their original genotype, expressed pluripotency markers, exhibited a normal karyotype, and demonstrated the ability to differentiate into cells representative of the three germ layers.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/metabolismo , Estudo de Associação Genômica Ampla/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/metabolismo , Linhagem Celular , Humanos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA