Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Bioresour Bioprocess ; 11(1): 9, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38647973

RESUMO

The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min-1 mg-1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L-1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L-1 h-1 and a specific productivity of 357.6 mg mg-enzyme-1 h-1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L-1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L-1 h-1 and 583.4 mg mg-enzyme-1 h-1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.

2.
Appl Microbiol Biotechnol ; 108(1): 208, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353763

RESUMO

The advent of the so-called colorful biology era is in line with the discovery of fluorescent proteins (FPs), which can be widely used to detect the intracellular locations of macromolecules or to determine the abundance of metabolites in organelles. The application of multiple FPs that emit different spectra and colors could be implemented to precisely evaluate cellular events. FPs were initially established with the emergence of the green fluorescent protein (GFP) from jellyfish. Red fluorescent proteins (RFPs) from marine anemones and several corals adopt fluorescent chromophores that are similar to GFP. Chromophores of GFP and GFP-like FPs are formed through the oxidative rearrangement of three chromophore-forming residues, thereby limiting their application to only oxidative environments. Alternatively, some proteins can be fluorescent upon their interaction with cellular prosthetic cofactors and, thus, work in aerobic and anaerobic conditions. The modification of an NADPH-dependent blue fluorescent protein (BFP) also expanded its application to the quantization of NADPH in the cellular environment. However, cofactor-dependent BFPs have an intrinsic weakness of poor photostability with a high fluorescent background. This review explores GFP-derived and NADPH-dependent BFPs with a focus on NADPH-dependent BFPs, which might be technically feasible in the near future upon coupling with two-photon fluorescence microscopy or nucleic acid-mimickers. KEY POINTS: • Oxidation-dependent GFP-like BFPs and redox-free NADPH-dependent BFPs • GFPs of weak photostability and intensity with a high fluorescent background • Real-time imaging using mBFP under two-photon fluorescence microscopy.


Assuntos
Antozoários , Fenilpropionatos , Animais , NADP , Proteínas de Fluorescência Verde/genética , Corantes
3.
BMC Public Health ; 24(1): 585, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395841

RESUMO

BACKGROUND & AIM(S): Medication adherence (MA) is a key factor in maintaining adequate blood pressure and preventing complications. However, some older adults experience difficulties in taking medicine properly due to declines in cognitive function. Although subjective memory complaints (SMC) are recognized as early markers of cognitive impairment, previous studies concerning the relationship between MA and cognitive function have focused only on objective cognitive function. Furthermore, while depression has a high correlation with SMC, low MA, and social support, there is limited evidence on their relationship. This study aims to understand the effect of SMC on MA and the mediating effect of depression and social support. METHOD(S): This study is a descriptive cross-sectional investigation. A sample of 195 community-dwelling hypertensive older adults with multimorbidity from 3 community senior centers in Gwangju, South Korea were recruited through convenience sampling. Data was collected through face-to-face survey from January to March 2018. The PROCESS macro v4.2 program [Model 6] was used to analyze the mediating effect of depression and social support in the relationship between SMC and MA. Data analysis was performed using SPSS/WIN 26.0 and STATA MP 17.0. RESULTS: The average MA was 6.74. There were significant differences in MA according to awareness of prescribed drugs, awareness of side effects, insomnia, and healthcare accessibility. SMC was positively correlated with depression, while social support and MA were negatively correlated. While depression was a significant mediator of the effect of SMC on MA, the mediating effect of social support was not significant. The multiple mediation effect of depression and social support was not significant. CONCLUSION: The results suggest that medication management of older adults in community settings should be accompanied by a comprehensive health assessment of associated factors. Health professionals should explore strategies to improve memory as well as prevent and alleviate depression to increase MA among hypertensive older adults with multimorbidity.


Assuntos
Depressão , Multimorbidade , Humanos , Idoso , Depressão/epidemiologia , Depressão/psicologia , Estudos Transversais , Apoio Social , Adesão à Medicação
4.
Curr Opin Biotechnol ; 85: 103047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128199

RESUMO

Single-carbon (C1) biorefinery plays a key role in the consumption of global greenhouse gases and a circular carbon economy. Thereby, we have focused on the valorization of C1 compounds (e.g. methanol, formaldehyde, and formate) into multicarbon products, including bioplastic monomers, glycolate, and ethylene glycol. For instance, methanol, derived from the oxidation of CH4, can be converted into glycolate, ethylene glycol, or erythrulose via formaldehyde and glycolaldehyde, employing C1 and/or C2 carboligases as essential enzymes. Escherichia coli was engineered to convert formate, produced from CO via CO2 or from CO2 directly, into glycolate. Recent progress in the design of biotransformation pathways, enzyme discovery, and engineering, as well as whole-cell biocatalyst engineering for C1 biorefinery, was addressed in this review.


Assuntos
Carbono , Metanol , Metanol/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Etilenoglicol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Formiatos/metabolismo , Formaldeído/metabolismo , Glicolatos/metabolismo
5.
Int J Biol Macromol ; 253(Pt 8): 127674, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37890751

RESUMO

A number of carboligases, which catalyze condensation of C1- and/or C2-aldehydes into multi-carbon products, have been reported. However, their catalytic activities and/or regioselectivities remained rather low. Thereby, this study has focused on engineering of C1 and C2 carboligases for the regioselective condensation of C1-formaldehyde into C4-erythrulose via C2-glycolaldehyde. The crystal structure of the glyoxylate carboligase from Escherichia coli (EcGCL) was elucidated in complex with glycolaldehyde. A structure-guided rationale generated several mutants, one of whose catalytic activity reached 15.6 M-1·s-1, almost 10 times greater than the wild-type enzyme. Another variant (i.e., EcGCL_R484M/N283Q/L478M/M488L/R284K) has shown significantly increased stability to the glycolaldehyde toxicity, enabling production of glycolaldehyde to 31 mM from 75 mM formaldehyde (conversion: 83 %). Besides, the E1 subunit of α-ketoglutarate dehydrogenase complex from Vibrio vulnificus (VvSucA) was engineered as a regiospecific C2 carboligase for condensation of glycolaldehyde into erythrulose. The combination of EcGCL_R484M/N283Q/L478M/M488L/R284K and VvSucA_K228L led to the cascade production of erythrulose to 8 mM from 90 mM formaldehyde via glycolaldehyde without byproduct formation. This study will contribute to valorization of C1 gases into industrially relevant multi-carbon products in an environment-friendly way.


Assuntos
Escherichia coli , Tiamina Pirofosfato , Escherichia coli/genética , Formaldeído , Carbono
6.
Arch Microbiol ; 205(12): 363, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906281

RESUMO

In bacteria and primitive eukaryotes, sulfonamide antibiotics block the folate pathway by inhibiting dihydropteroate synthase (FolP) that combines para-aminobenzoic acid (pABA) and dihydropterin pyrophosphate (DHPP) to form dihydropteroic acid (DHP), a precursor for tetrahydrofolate synthesis. However, the emergence of resistant strains has severely compromised the use of pABA mimetics as sulfonamide drugs. Salmonella enterica serovar Gallinarum (S. Gallinarum) is a significant source of antibiotic-resistant infections in poultry. Here, a sulfonamide-resistant FolP mutant library of S. Gallinarum was generated through random mutagenesis. Among resistant strains, substitution of amino acid Arginine 171 with Proline (R171P) in the FolP protein conferred the highest resistance against sulfonamide. Substitution of Phe28 with Leu or Ile (F28L/I) led to modest sulfonamide resistance. Structural modeling indicates that R171P and Phenylalanine 28 with leucine or isoleucine (F28L/I) substitution mutations are located far from the substrate-binding site and cause insignificant conformational changes in the FolP protein. Rather, in silico studies suggest that the mutations altered the stability of the protein, potentially resulting in sulfonamide resistance. Identification of specific mutations in FolP that confer resistance to sulfonamide would contribute to our understanding of the molecular mechanisms of antibiotic resistance.


Assuntos
Ácido 4-Aminobenzoico , Di-Hidropteroato Sintase , Di-Hidropteroato Sintase/genética , Di-Hidropteroato Sintase/química , Di-Hidropteroato Sintase/metabolismo , Antibacterianos/metabolismo , Sulfanilamida , Sulfonamidas/farmacologia , Sulfonamidas/química , Mutação
7.
Aging Male ; 26(1): 2257302, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812685

RESUMO

BACKGROUND: With the rapid increase in population longevity, more clinical attention is being paid to the overall health of long-lived people, especially centenarians. Subjective health, which is the perception of one's health status, predicts both mortality and declining physical function in older adults. The purpose of this study was to investigate the factors related to subjective health among centenarians and near-centenarians (ages ≥95) living in a rural area of South Korea. METHODS: A total of 101 participants were enrolled from four different regions (Gurye, Gokseong, Sunchang, and Damyang), known as the Longevity Belt in Korea. Variables assessing physical and mental health, including the results of blood tests, were examined. Factors associated with good subjective health were identified with logistic regression analysis. RESULTS: Fifty-six participants (59.6%) were subjectively healthy among the centenarians and near-centenarians. Logistic regression analysis revealed that depressive mood was the only factor associated with subjective health and was negatively correlated. The regression model explained 39% of the variance in subjective health. CONCLUSIONS: These findings emphasize the importance of mental health at very advanced ages. Because depressive mood negatively correlates with subjective health, more attention is needed to prevent and manage mood symptoms of people of advanced ages, including centenarians.


Assuntos
Centenários , Depressão , Idoso de 80 Anos ou mais , Humanos , Idoso , Depressão/epidemiologia , Estudos Transversais , Autoavaliação Diagnóstica , Longevidade
8.
J Agric Food Chem ; 71(10): 4328-4336, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36856566

RESUMO

One-carbon chemicals (C 1s) are potential building blocks as they are cheap, sustainable, and abiotic components. Methanol-derived formaldehyde can be another versatile building block for the production of 2-keto-4-hydroxyacid derivatives that can be used for amino acids, hydroxy carboxylic acids, and chiral aldehydes. To produce 2-keto-4-hydroxybutyrate from C 1s in an environment-friendly way, we characterized an aldolase from Pseudomonas aeruginosa PAO1 (PaADL), which showed much higher catalytic activity in condensing formaldehyde and pyruvate than the reported aldolases. By applying a structure-based rational approach, we found a variant (PaADLV121A/L241A) that exhibited better catalytic activities than the wild-type enzyme. Next, we constructed a one-pot cascade biocatalyst system by combining PaADL and a methanol dehydrogenase (MDH) and, for the first time, effectively produced 2-keto-4-hydroxybutyrate as the main product from pyruvate and methanol via an enzymatic reaction. This simple process applied here will help design a green process for the production of 2-keto-4-hydroxyacid derivatives.


Assuntos
Frutose-Bifosfato Aldolase , Ácido Pirúvico , Frutose-Bifosfato Aldolase/metabolismo , Ácido Pirúvico/metabolismo , Metanol/metabolismo , Aldeído Liases/química , Formaldeído
9.
Biochim Biophys Acta Proteins Proteom ; 1871(3): 140900, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682394

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) in many prokaryotes functions as an adaptive immune system against mobile genetic elements. A heterologous ribonucleoprotein silencing complex composed of CRISPR-associated (Cas) proteins and a CRISPR RNA (crRNA) neutralizes the incoming mobile genetic elements. The type I and III silencing complexes commonly include a protein-helical backbone of several copies of identical subunits, for example, Cas7 in the type I silencing complex. In this study, we structurally characterized type I-B Cas7 (Csh2 from Thermobaculum terrenum; TterCsh2). The revealed crystal structure of TterCsh2 shows a typical glove-like architecture of Cas7, which consists of a palm, a thumb, and a finger domain. Csh2 proteins have 5 conserved sequence motifs that are arranged to form a presumable crRNA-binding site in the TterCsh2 structure. This crRNA binding site of TterCsh2 is structurally and potentially comparable to those observed in helix-forming Cas7 structures in other sub-types. Analysis of the reported Cas7 structures and their sequences suggests that Cas7s can be divided into at least two sub-classes. These data will broaden our understanding on the Cascade complex of CRISPR/Cas systems.


Assuntos
Bactérias , RNA , Sítios de Ligação
10.
Signal Transduct Target Ther ; 7(1): 367, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253361

RESUMO

The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.


Assuntos
Tratamento Farmacológico da COVID-19 , Lipólise , Infecções por Orthomyxoviridae , Animais , Humanos , Camundongos , Antivirais/farmacologia , Citocinas , Ácidos Graxos não Esterificados , Vírus da Influenza A , Lipase , Proteínas de Membrana Transportadoras , RNA , SARS-CoV-2 , Infecções por Orthomyxoviridae/tratamento farmacológico
11.
Int J Biol Macromol ; 208: 381-389, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35337914

RESUMO

Type I restriction-modification enzymes are oligomeric proteins composed of methylation (M), DNA sequence-recognition (S), and restriction (R) subunits. The different bipartite DNA sequences of 2-4 consecutive bases are recognized by two discerned target recognition domains (TRDs) located at the two-helix bundle of the two conserved regions (CRs). Two M-subunits and a single S-subunit form an oligomeric protein that functions as a methyltransferase (M2S1 MTase). Here, we present the crystal structure of the intact MTase from Vibrio vulnificus YJ016 in complex with the DNA-mimicking Ocr protein and the S-adenosyl-L-homocysteine (SAH). This MTase includes the M-domain with a helix tail (M-tail helix) and the S1/2-domain of a TRD and a CR α-helix. The Ocr binds to the cleft of the TRD surface and SAH is located in the pocket within the M-domain. The solution- and negative-staining electron microscopy-based reconstructed (M1S1/2)2 structure reveals a symmetric (S1/2)2 assembly using two CR-helices and two M-tail helices as a pivot, which is plausible for recognizing two DNA regions of same sequence. The conformational flexibility of the minimal M1S1/2 MTase dimer indicates a particular state resembling the structure of M2S1 MTases.


Assuntos
Enzimas de Restrição-Modificação do DNA , Metiltransferases , Sequência de Aminoácidos , DNA/química , Enzimas de Restrição-Modificação do DNA/química , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Metilação , Metiltransferases/química
12.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613556

RESUMO

The orphan nuclear receptor, estrogen-related receptor γ (ERRγ) is a constitutively active transcription factor involved in mitochondrial metabolism and energy homeostasis. GSK5182, a specific inverse agonist of ERRγ that inhibits transcriptional activity, induces a conformational change in ERRγ, resulting in a loss of coactivator binding. However, the molecular mechanism underlying the stabilization of the ERRγ protein by its inverse agonist remains largely unknown. In this study, we found that GSK5182 inhibited ubiquitination of ERRγ, thereby stabilizing the ERRγ protein, using cell-based assays and confocal image analysis. Y326 of ERRγ was essential for stabilization by GSK5182, as ligand-induced stabilization of ERRγ was not observed with the ERRγ-Y326A mutant. GSK5182 suppressed ubiquitination of ERRγ by the E3 ligase Parkin and subsequent degradation. The inhibitory activity of GSK5182 was strong even when the ERRγ protein level was elevated, as ERRγ bound to GSK5182 recruited a corepressor, small heterodimer partner-interacting leucine zipper (SMILE), through the activation function 2 (AF-2) domain, without alteration of the nuclear localization or DNA-binding ability of ERRγ. In addition, the AF-2 domain of ERRγ was critical for the regulation of protein stability. Mutants in the AF-2 domain were present at higher levels than the wild type in the absence of GSK5182. Furthermore, the ERRγ-L449A/L451A mutant was no longer susceptible to GSK5182. Thus, the AF-2 domain of ERRγ is responsible for the regulation of transcriptional activity and protein stability by GSK5182. These findings suggest that GSK5182 regulates ERRγ by a unique molecular mechanism, increasing the inactive form of ERRγ via inhibition of ubiquitination.


Assuntos
Agonismo Inverso de Drogas , Receptores Nucleares Órfãos , Furilfuramida , Ubiquitinação , Estabilidade Proteica
13.
Bioresour Technol ; 346: 126349, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34800639

RESUMO

As numerous industrial bioprocesses rely on yeast fermentation, developing CO2-fixing yeast strains can be an attractive option toward sustainable industrial processes and carbon neutrality. Recent studies have shown that the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) in yeasts, such as Saccharomyces cerevisiae and Kluyveromyces marxianus, enables mixotrophic CO2 fixation and production of biofuels. Also, the expression of a synthetic Calvin-Benson-Bassham (CBB) cycle including RuBisCO in Pichia pastoris enables autotrophic growth on CO2. This review highlights recent advances in metabolic engineering strategies to enable CO2 fixation in yeasts. Also, we discuss the potentials of other natural and synthetic metabolic pathways independent of RuBisCO for developing CO2-fixing yeast strains capable of producing value-added biochemicals.


Assuntos
Dióxido de Carbono , Engenharia Metabólica , Ciclo do Carbono , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Saccharomyces cerevisiae/metabolismo
14.
J Synchrotron Radiat ; 28(Pt 4): 1210-1215, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212886

RESUMO

BL-11C, a new protein crystallography beamline, is an in-vacuum undulator-based microfocus beamline used for macromolecular crystallography at the Pohang Accelerator Laboratory and it was made available to users in June 2017. The beamline is energy tunable in the range 5.0-20 keV to support conventional single- and multi-wavelength anomalous-dispersion experiments against a wide range of heavy metals. At the standard working energy of 12.659 keV, the monochromated beam is focused to 4.1 µm (V) × 8.5 µm (H) full width at half-maximum at the sample position and the measured photon flux is 1.3 × 1012 photons s-1. The experimental station is equipped with a Pilatus3 6M detector, a micro-diffractometer (MD2S) incorporating a multi-axis goniometer, and a robotic sample exchanger (CATS) with a dewar capacity of 90 samples. This beamline is suitable for structural determination of weakly diffracting crystalline substances, such as biomaterials, including protein, nucleic acids and their complexes. In addition, serial crystallography experiments for determining crystal structures at room temperature are possible. Herein, the current beamline characteristics, technical information for users and some recent scientific highlights are described.


Assuntos
Cristalografia por Raios X/instrumentação , Substâncias Macromoleculares/química , Proteínas/química , Radioisótopos de Carbono , Desenho de Equipamento , Legionella/química , Muramidase/química , Neisseria meningitidis/química , Elementos Estruturais de Proteínas , Síncrotrons , Zymomonas/química
15.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 618-627, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950018

RESUMO

Peptidoglycan comprises repeating units of N-acetylmuramic acid, N-acetylglucosamine and short cross-linking peptides. After the conversion of UDP-N-acetylglucosamine (UNAG) to UDP-N-acetylmuramic acid (UNAM) by the MurA and MurB enzymes, an amino acid is added to UNAM by UDP-N-acetylmuramic acid L-alanine ligase (MurC). As peptidoglycan is an essential component of the bacterial cell wall, the enzymes involved in its biosynthesis represent promising targets for the development of novel antibacterial drugs. Here, the crystal structure of Mycobacterium bovis MurC (MbMurC) is reported, which exhibits a three-domain architecture for the binding of UNAM, ATP and an amino acid as substrates, with a nickel ion at the domain interface. The ATP-binding loop adopts a conformation that is not seen in other MurCs. In the UNAG-bound structure of MbMurC, the substrate mimic interacts with the UDP-binding domain of MbMurC, which does not invoke rearrangement of the three domains. Interestingly, the glycine-rich loop of the UDP-binding domain of MbMurC interacts through hydrogen bonds with the glucose moiety of the ligand, but not with the pyrophosphate moiety. These findings suggest that UNAG analogs might serve as potential candidates for neutralizing the catalytic activity of bacterial MurC.


Assuntos
Acetilglucosamina/metabolismo , Proteínas de Bactérias/química , Ligases/química , Mycobacterium bovis/enzimologia , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
16.
Proteins ; 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33792088

RESUMO

Carbohydrates play a major role in infection strategies of various enteric pathogens. In Campylobacter jejuni, the most common cause of gastroenteritis, uniquely modified heptoses found in surface carbohydrates are synthesized by specific pathways. Owing to the importance of such pathways for the infectious potential of pathogens and/or their virulence, these biosynthesis pathways present potential targets for therapeutic intervention. Here, we determined the crystal structure of GDP-6-OMe-4-keto-L-xylo-heptose reductase (MlghC), an enzyme within the L-gluco-heptose synthesis pathway of C. jejuni strain NCTC 11168. This enzyme lacks the canonical tyrosine residue of the conserved catalytic Ser-Lys-Tyr triad commonly found among functionally related reductases. Despite adopting the overall two-domain fold shared with other short-chain dehydrogenase/reductase family members, subtle structural differences in the interface between the cofactor- and substrate-binding domains explain the absence of epimerase activity and different substrate specificity of this reductase. Modeling of the product-bound complex based on the crystal structure presented here suggests that a tyrosine residue unique to MlghC replaces the missing canonical residue of the catalytic triad.

17.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140564, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171283

RESUMO

The trehalose biosynthesis pathway has recently received attention for therapeutic intervention combating infectious diseases caused by bacteria, helminths or fungi. Trehalose-6-phosphate phosphatase (TPP) is a key enzyme of the most common trehalose biosynthesis pathway and a particularly attractive target owing to the toxicity of accumulated trehalose-6-phosphate in pathogens. Here, we characterised TPP-like proteins from bacterial pathogens implicated in nosocomial infections in terms of their steady-state kinetics as well as pH- and metal-dependency of their enzymatic activity. Analysis of the steady-state kinetics of recombinantly expressed enzymes from Acinetobacter baumannii, Corynebacterium diphtheriae and Pseudomonas stutzeri yielded similar kinetic parameters as those of other reported bacterial TPPs. In contrast to nematode TPPs, the divalent metal ion appears to be bound only weakly in the active site of bacterial TPPs, allowing the exchange of the resident magnesium ion with other metal ions. Enzymatic activity comparable to the wild-type enzyme was observed for the TPP from P. stutzeri with manganese, cobalt and nickel. Analysis of the enzymatic activity of S. maltophilia TPP active site mutants provides evidence for the involvement of four canonical aspartate residues as well as a strictly conserved histidine residue of TPP-like proteins from bacteria in the enzyme mechanism. That histidine residue is a member of an interconnected network of five conserved residues in the active site of bacterial TPPs which likely constitute one or more functional units, directly or indirectly cooperating to enhance different aspects of the catalytic activity.


Assuntos
Infecções Bacterianas/enzimologia , Infecções Bacterianas/microbiologia , Glucosiltransferases/genética , Trealose/biossíntese , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/patogenicidade , Infecções Bacterianas/genética , Domínio Catalítico/genética , Corynebacterium diphtheriae/enzimologia , Corynebacterium diphtheriae/patogenicidade , Glucosiltransferases/química , Humanos , Pseudomonas stutzeri/enzimologia , Pseudomonas stutzeri/patogenicidade , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/genética , Trealose/metabolismo
18.
Exp Mol Med ; 52(2): 204-212, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32071378

RESUMO

The interaction between histones and DNA is important for eukaryotic gene expression. A loose interaction caused, for example, by the neutralization of a positive charge on the histone surface by acetylation, induces a less compact chromatin structure, resulting in feasible accessibility of RNA polymerase and increased gene expression. In contrast, the formation of a tight chromatin structure due to the deacetylation of histone lysine residues on the surface by histone deacetylases enforces the interaction between the histones and DNA, which minimizes the chance of RNA polymerases contacting DNA, resulting in decreased gene expression. Therefore, the balance of the acetylation of histones mediated by histone acetylases (HATs) and histone deacetylases (HDACs) is an issue of transcription that has long been studied in relation to posttranslational modification. In this review, current knowledge of HDACs is briefly described with an emphasis on recent progress in research on HDACs, especially on class IIa HDACs.


Assuntos
Histona Desacetilases/genética , Acetilação , Cromatina/genética , DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Expressão Gênica/genética , Histona Acetiltransferases/genética , Histonas/genética , Humanos
19.
Sci Rep ; 9(1): 16165, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700060

RESUMO

Protein-based drug discovery strategies have the distinct advantage of providing insights into the molecular mechanisms of chemical effectors. Currently, there are no known trehalose-6-phosphate phosphatase (TPP) inhibitors that possess reasonable inhibition constants and chemical scaffolds amenable to convenient modification. In the present study, we subjected recombinant TPPs to a two-tiered screening approach to evaluate several diverse compound groups with respect to their potential as TPP inhibitors. From a total of 5452 compounds tested, N-(phenylthio)phthalimide was identified as an inhibitor of nematode TPPs with apparent Ki values of 1.0 µM and 0.56 µM against the enzymes from the zoonotic roundworms Ancylostoma ceylanicum and Toxocara canis, respectively. Using site-directed mutagenesis, we demonstrate that this compound acts as a suicide inhibitor that conjugates a strictly conserved cysteine residue in the vicinity of the active site of nematode TPPs. The anthelmintic properties of N-(phenylthio)phthalimide were assessed in whole nematode assays using larvae of the ascaroids T. canis and T. cati, as well as the barber's pole worm Haemonchus contortus. The compound was particularly effective against each of the ascaroids with an IC50 value of 9.3 µM in the survival assay of T. cati larvae, whereas no bioactivity was observed against H. contortus.


Assuntos
Anti-Helmínticos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Nematoides/enzimologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Ftalimidas/farmacologia , Animais , Proteínas de Helminto/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo
20.
Front Microbiol ; 10: 2458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736904

RESUMO

The currently known prokaryotic adaptive immune system against mobile genetic elements is based on clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated (Cas) proteins and the transcribed short CRISPR RNA (crRNA) molecule form a heterologous ribonucleoprotein complex that neutralizes invading foreign nucleic acids, wherein the crRNA molecule base-pairs with the exogenous genetic elements. In the ribonucleoprotein complexes of the type I CRISPR system, a helical backbone of six identical subunits is commonly found. However, it is not clear how this ribonucleoprotein complex is assembled and what is the determinant factor for its size. We elucidated the crystal structure of the Csy3 subunit of the type I-F ribonucleoprotein complex from Zymomonas mobilis (ZmCsy3), in which seven ZmCsy3 protomers in the asymmetric unit form a molecular helix that is part of a filamentous structure in the entire crystal system. This ZmCsy3 helical structure is remarkably similar to the crRNA-bound hexameric Csy3 backbone from Pseudomonas aeruginosa, with conserved interactions between neighboring subunits. The monomeric ZmCsy3 in solution is transformed into different oligomeric states depending on the added crRNAs. These results suggest that a crRNA and Csy3 subunit play a determinant role in the stepwise formation of the functional Cascade ribonucleoprotein complex and the recruitment of other subunits, and crRNA functions as a molecular ruler for determining the size of the Cascade silencing complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA