Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nanoscale ; 14(44): 16611-16617, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36317650

RESUMO

Tunable electrical phase transitions based on the structural and quantum-state phase transitions in two-dimensional transition-metal dichalcogenides have attracted attention in both semiconducting electronics and quantum electronics applications. Here, we report gate-voltage-induced reversible electrical phase transitions in Mo0.67W0.33Se2 (MoWSe) field-effect transistors prepared on SiO2/Si substrates. In gate-induced depletion regions of the 2H phase, an electrical current resumes flow at 150 K < T < 200 K with decreasing T irrespective of the layer number (n) for MoWSe when n < 20. The newly appearing electron-doped-type conducting channel again enters the 2H-phase region when the back-gate voltage increases, accompanied by the negative differential transconductance for four-layer and monolayer devices or by a deflection point in the transfer curves for a multilayer device. The thermal activation energies of the new conducting and 2H-phase branches differ by one order of magnitude at the same gate voltage for both the four-layer and monolayer cases, indicating that the electrical band at the Fermi level was modified. The hysteresis measurements for the gate voltage were performed with a five-layer device, which confirms the reversible electrical transition behavior. The possible origins of the nucleated conducting phase in the depletion region of the 2H phase of MoWSe are discussed.

2.
Sci Rep ; 11(1): 17790, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493752

RESUMO

The electrical phase transition in van der Waals (vdW) layered materials such as transition-metal dichalcogenides and Bi2Sr2CaCu2O8+x (Bi-2212) high-temperature superconductor has been explored using various techniques, including scanning tunneling and photoemission spectroscopies, and measurements of electrical resistance as a function of temperature. In this study, we develop one useful method to elucidate the electrical phases in vdW layered materials: indium (In)-contacted vdW tunneling spectroscopy for 1T-TaS2, Bi-2212 and 2H-MoS2. We utilized the vdW gap formed at an In/vdW material interface as a tunnel barrier for tunneling spectroscopy. For strongly correlated electron systems such as 1T-TaS2 and Bi-2212, pronounced gap features corresponding to the Mott and superconducting gaps were respectively observed at T = 4 K. We observed a gate dependence of the amplitude of the superconducting gap, which has potential applications in a gate-tunable superconducting device with a SiO2/Si substrate. For In/10 nm-thick 2H-MoS2 devices, differential conductance shoulders at bias voltages of approximately ± 0.45 V were observed, which were attributed to the semiconducting gap. These results show that In-contacted vdW gap tunneling spectroscopy in a fashion of field-effect transistor provides feasible and reliable ways to investigate electronic structures of vdW materials.

3.
Molecules ; 26(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917209

RESUMO

Various intriguing quantum transport measurements for carbon nanotubes (CNTs) based on their unique electronic band structures have been performed adopting a field-effect transistor (FET), where the contact resistance represents the interaction between the one-dimensional and three-dimensional systems. Recently, van der Waals (vdW) gap tunneling spectroscopy for single-walled CNTs with indium-metal contacts was performed adopting an FET device, providing the direct assignment of the subband location in terms of the current-voltage characteristic. Here, we extend the vdW gap tunneling spectroscopy to multi-walled CNTs, which provides transport spectroscopy in a tunneling regime of ~1 eV, directly reflecting the electronic density of states. This new quantum transport regime may allow the development of novel quantum devices by selective electron (or hole) injection to specific subbands.

4.
Nanotechnology ; 32(19): 195207, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33530078

RESUMO

We demonstrate a gate-tunable quantum dot (QD) located between two potential barriers defined in a few-layer MoS2. Although both local gates used to tune the potential barriers have disorder-induced QDs, we observe diagonal current stripes in current resonant islands formed by the alignment of the Fermi levels of the electrodes and the energy levels of the disorder-induced QDs, as evidence of the gate-tunable QD. We demonstrate that the charging energy of the designed QD can be tuned in the range of 2-6 meV by changing the local-gate voltages in ∼1 V.

5.
Nanotechnology ; 31(22): 225504, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32069439

RESUMO

In the present study, phase-dependent gas sensitivities of MoS2 chemical sensors were examined. While 1T-phase MoS2 (1T-MoS2) has shown better chemical sensitivity than has 2H-phase MoS2 (2H-MoS2), the instability of the 1T phase has been hindering applications of 1T-MoS2 as chemical sensors. Here, the chemical sensitivity of MoS2 locked in its 1T phase by using a ZnO phase lock was investigated. To develop MoS2 chemical sensors locked in the 1T phase, we synthesized a multi-dimensional nanomaterial by growing ZnO nanorods onto MoS2 nanosheets (ZnO@1T-MoS2). Raman spectroscopy and x-ray photoelectron spectroscopy analyses of such phase-locked 1T-MoS2 subjected to flash light irradiation 100 times confirmed its robustness. ZnO nanomaterials hybridized on MoS2 nanosheets not only froze the MoS2 at its 1T phase, but also increased the active surface area for chemical sensing. The resulting hybridized material showed better response, namely better sensitivity, to NO2 gas exposure at room temperature than did 1T-MoS2 and 2H-MoS2. This result indicated that increased surface area and heterojunction formation between MoS2 and ZnO constitute a more promising route for improving sensitivity than using the 1T phase itself.

6.
Nanoscale ; 10(48): 23175-23181, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30516777

RESUMO

Coupling of the electron orbital motion and spin, i.e., spin-orbit coupling (SOC) leads to nontrivial changes in energy-level structures, giving rise to various spectroscopies and applications. The SOC in solids generates energy-band inversion or splitting under zero or weak magnetic fields, which is required for topological phases or Majorana fermions. Here, we examined the interplay between the Zeeman splitting and SOC by performing the transport spectroscopy of Landau levels (LLs) in indium arsenide nanowires under a strong magnetic field. We observed the anomalous Zeeman splitting of LLs, which depends on the quantum number of LLs as well as the electron spin. We considered that this observation was attributed to the interplay between the Zeeman splitting and the SOC. Our findings suggest an approach of generating spin-resolved chiral electron transport in nanowires.

7.
Nano Lett ; 16(7): 3969-75, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27223230

RESUMO

The moderate band gap of black phosphorus (BP) in the range of 0.3-2 eV, along a high mobility of a few hundred cm(2) V(-1) s(-1) provides a bridge between the gapless graphene and relatively low-mobility transition metal dichalcogenides. Here, we study the mechanism of electrical and thermoelectric transport in 10-30 nm thick BP devices by measurements of electrical conductance and thermopower (S) with various temperatures (T) and gate-electric fields. The T dependences of S and the sheet conductance (σ□) of the BP devices show behaviors of T(1/3) and exp[-(1/T)(1/3)], respectively, where S reaches ∼0.4 mV/K near room T. This result indicates that two-dimensional (2D) Mott's variable range hopping (VRH) is a dominant mechanism in the thermoelectric and electrical transport in our examined thin BP devices. We consider the origin of the 2D Mott's VRH transport in our BPs as trapped charges at the surface of the underlying SiO2 based on the analysis with observed multiple quantum dots.

8.
Sci Rep ; 6: 21272, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888147

RESUMO

At the heart of ever growing demands for faster signal processing is ultrafast charge transport and control by electromagnetic fields in semiconductors. Intense optical fields have opened fascinating avenues for new phenomena and applications in solids. Because the period of optical fields is on the order of a femtosecond, the current switching and its control by an optical field may pave a way to petahertz optoelectronic devices. Lately, a reversible semimetallization in fused silica on a femtosecond time scale by using a few-cycle strong field (~1 V/Å) is manifested. The strong Wannier-Stark localization and Zener-type tunneling were expected to drive this ultrafast semimetallization. Wider spread of this technology demands better understanding of whether the strong field behavior is universally similar for different dielectrics. Here we employ a carrier-envelope-phase stabilized, few-cycle strong optical field to drive the semimetallization in sapphire, calcium fluoride and quartz and to compare this phenomenon and show its remarkable similarity between them. The similarity in response of these materials, despite the distinguishable differences in their physical properties, suggests the universality of the physical picture explained by the localization of Wannier-Stark states. Our results may blaze a trail to PHz-rate optoelectronics.

9.
Nano Lett ; 15(8): 5414-9, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26177864

RESUMO

Electrical stimulation through direct electrical activation has been widely used to recover the function of neurons, primarily through the extracellular application of thin film electrodes. However, studies using extracellular methods show limited ability to reveal correlations between the cells and the electrical stimulation due to interference from external sources such as membrane capacitance and culture medium. Here, we demonstrate long-term intracellular electrical stimulation of undamaged pheochromocytoma (PC-12) cells by utilizing a vertical nanowire electrode array (VNEA). The VNEA was prepared by synthesizing silicon nanowires on a Si substrate through a vapor-liquid-solid (VLS) mechanism and then fabricating them into electrodes with semiconductor nanodevice processing. PC-12 cells were cultured on the VNEA for 4 days with intracellular electrical stimulation and then a 2-day stabilization period. Periodic scanning via two-photon microscopy confirmed that the electrodes pierced the cells without inducing damage. Electrical stimulation through the VNEA enhances cellular differentiation and neurite outgrowth by about 50% relative to extracellular stimulation under the same conditions. VNEA-mediated stimulation also revealed that cellular differentiation and growth in the cultures were dependent on the potential used to stimulate them. Intracellular stimulation using nanowires could pave the way for controlled cellular differentiation and outgrowth studies in living cells.

10.
Nanotechnology ; 26(33): 335701, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26222018

RESUMO

In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.


Assuntos
Técnicas Citológicas/instrumentação , Eletrofisiologia/instrumentação , Nanotubos de Carbono/química , Animais , Células Cultivadas , Técnicas Citológicas/métodos , Eletrodos , Eletrofisiologia/métodos , Desenho de Equipamento , Grafite/química , Camundongos
11.
Nanotechnology ; 25(29): 295201, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24981295

RESUMO

We demonstrate a simple but efficient design for forming tunable single, double and triple quantum dots (QDs) in a sub-µm-long carbon nanotube (CNT) with two major features that distinguish this design from that of traditional CNT QDs: the use of i) Al2Ox tunnelling barriers between the CNT and metal contacts and ii) local side gates for controlling both the height of the potential barrier and the electron-confining potential profile to define multiple QDs. In a serial triple QD, in particular, we find that a stable molecular coupling state exists between two distant outer QDs. This state manifests in anti-crossing charging lines that correspond to electron and hole triple points for the outer QDs. The observed results are also reproduced in calculations based on a capacitive interaction model with reasonable configurations of electrons in the QDs. Our design using artificial tunnel contacts and local side gates provides a simple means of creating multiple QDs in CNTs for future quantum-engineering applications.

12.
Food Chem ; 163: 46-50, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24912694

RESUMO

Secondary metabolic variation of wild apple (Malus prunifolia) was compared with fruits that contained high flavan-3-ol like grapes (GR), apple (App) and the beverage, black tea (BT). The polyphenol contents in wild apple was higher than in GR and App but less than BT. The identified phenolic acids (gallic, protocatechuic, chlorogenic, p-coumaric and ferulic acids) and flavonoids (quercetin and myricetin) indicate that wild apple was higher than that of App. Among all the samples, BT had highest antioxidant potential in terms of 2,2'-Azinobis (3-thylbenzothiazoline-6-sulfonic acid) diammonium salt (95.36%), metal chelating (45.36%) and phosphomolybdenum activity (95.8 mg/g) because of the high flavan-3-ol content. The gallic acid and epigallocatechin gallate were highly correlated with antioxidant potential and these metabolites levels are higher in wild apple than that of App. Wild apples being a non-commercial natural source, a detailed study of this plant will be helpful for the food additive and preservative industry.


Assuntos
Antioxidantes/farmacologia , Camellia sinensis/metabolismo , Flavonoides/análise , Frutas/química , Malus/metabolismo , Chá/química , Vitis/metabolismo , Cromatografia Líquida de Alta Pressão , Polifenóis/análise
13.
Nanoscale Res Lett ; 9(1): 56, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24484729

RESUMO

The single living cell action potential was measured in an intracellular mode by using a vertical nanoelectrode. For intracellular interfacing, Si nanowires were vertically grown in a controlled manner, and optimum conditions, such as diameter, length, and nanowire density, were determined by culturing cells on the nanowires. Vertical nanowire probes were then fabricated with a complimentary metal-oxide-semiconductor (CMOS) process including sequential deposition of the passivation and electrode layers on the nanowires, and a subsequent partial etching process. The fabricated nanowire probes had an approximately 60-nm diameter and were intracellular. These probes interfaced with a GH3 cell and measured the spontaneous action potential. It successfully measured the action potential, which rapidly reached a steady state with average peak amplitude of approximately 10 mV, duration of approximately 140 ms, and period of 0.9 Hz.

14.
Nanoscale Res Lett ; 8(1): 502, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24279451

RESUMO

Au-coated vertical silicon nanowire electrode array (VSNEA) was fabricated using a combination of bottom-up and top-down approaches by chemical vapor deposition and complementary metal-oxide-semiconductor process for biomolecule sensing. To verify the feasibility for the detection of biomolecules, Au-coated VSNEA was functionalized using peptides having a fluorescent probe. Cyclic voltammograms of the peptide-functionalized Au-coated VSNEA show a steady-state electrochemical current behavior. Because of the critically small dimension and vertically aligned nature of VSNEA, the current density of Au-coated VSNEA was dramatically higher than that of Au film electrodes. Au-coated VSNEA further showed a large current difference with and without peptides that was nine times more than that of Au film electrodes. These results indicate that Au-coated VSENA is highly effective device to detect peptides compared to conventional thin-film electrodes. Au-coated VSNEA can also be used as a divergent biosensor platform in many applications.

15.
Phys Rev Lett ; 110(7): 076803, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166391

RESUMO

We report nonequilibrium transport measurements of gate-tunable Andreev bound states in a carbon nanotube quantum dot coupled to two superconducting leads. In particular, we observe clear features of two types of Kondo ridges, which can be understood in terms of the interplay between the Kondo effect and superconductivity. In the first type (type I), the coupling is strong and the Kondo effect is dominant. Levels of the Andreev bound states display anticrossing in the middle of the ridge. On the other hand, crossing of the two Andreev bound states is shown in the second type (type II) together with the 0-π transition of the Josephson junction. Our scenario is well understood in terms of only a single dimensionless parameter, k(B)T(K)(min)/Δ, where T(K)(min) and Δ are the minimum Kondo temperature of a ridge and the superconducting order parameter, respectively. Our observation is consistent with measurements of the critical current, and is supported by numerical renormalization group calculations.

16.
Nanotechnology ; 23(45): 455202, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23085620

RESUMO

We describe the observation of photoconductivity and enhanced memory effects in graphene devices functionalized with clusters of alkylated C(60) molecules. The alkylated C(60) clusters were adsorbed on chemical vapor deposition-grown graphene devices from an aprotic medium. The resulting alkylated C(60)-graphene hybrid devices showed reproducible photoconductive behavior originating from the electron-accepting nature of the C(60) molecules. Significantly enhanced gate hysteresis was observed upon illumination with visible light, thereby enabling the use of C(60)-graphene hybrid devices in three-terminal photo-memory applications.

17.
ACS Nano ; 3(11): 3649-55, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19795840

RESUMO

We herein demonstrate that Ni-decorated single-walled carbon nanotube field effect transistors (SWNT-FETs) combined with antibody fragments can be used as effective biosensing platforms. Nanoscales Ni particles 20 to 60 nm in diameter were formed on the sidewalls of SWNT-FETs using an electrochemical method. Carcinoembryonic antigen (CEA)-binding single chain variable fragments (scFvs) with a hexahistidine tag [(his)(6)] were synthesized using genetic engineering, and ordered immobilization of anti-CEA ScFvs on Ni nanoparticles was achieved by exploiting the specific interaction between hexahistidine and Ni. Whereas randomly oriented anti-CEA scFvs did not impart a noticeable change of conductance upon addition of CEA, a clear increase in conductance was observed using Ni-decorated SWNT-FETs functionalized with engineered scFvs.


Assuntos
Anticorpos Imobilizados/química , Eletroquímica/instrumentação , Nanotubos de Carbono/química , Níquel/química , Anticorpos de Cadeia Única/química , Animais , Anticorpos Imobilizados/genética , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/metabolismo , Antígeno Carcinoembrionário/imunologia , Bovinos , Condutividade Elétrica , Ouro/química , Histidina/metabolismo , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Modelos Moleculares , Oligopeptídeos/metabolismo , Conformação Proteica , Engenharia de Proteínas , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Transistores Eletrônicos
18.
Nanotechnology ; 20(11): 115708, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19420456

RESUMO

We have fabricated Si(1-x)Ge(x) alloy nanowire devices with Ni and Ni/Au electrodes. The electrical transport characteristics of the alloy nanowires depended strongly on the annealing temperature and contact metals. Ni/Au-contacted devices annealed at 400 degrees C showed p-type transistor behavior as well as a resistance switching effect, while no switching was observed from Ni-contacted alloy nanowire devices. To identify the origin of such a hysteretic resistance switching effect, we constructed nanowire devices on a 40 nm Si(3)N(4) membrane. Transmission electron microscopy analysis combined with electrical transport measurements revealed that devices contacted with Ni/Au, and thereby showing resistance switching, have Au atoms right next to the alloy nanowire.

19.
J Nanosci Nanotechnol ; 8(9): 4349-52, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19049024

RESUMO

We have investigated the electrical transports of double-walled carbon nanotube field effect transistors (DWNT-FETs) with modified contacts. The CNT/Au metal contacts of DWNT-FETs were modified with a self-assembled monolayer of 2-aminoethanethiol molecules. In ambient air, the contact-modified DWNT-FETs showed a decreased conductance in the p-channel (negative gate voltages) and an increased conductance in the n-channel (positive gate voltages), while the original device showed p-type transport. In a vacuum, the n-channel current in the contact-modified DWNT-FET started to rise. We observed a clear n-type transport in the high vacuum. Almost no changes in the gate threshold voltages were observed by means of the contact-modification with a self-assembled monolayer. While the semiconducting DWNT-FET showed a clear transition from a p-type to n-type transistor with contact modification, no apparent changes were observed in semi-metallic DWNT devices.

20.
Nano Lett ; 8(11): 3656-61, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18954130

RESUMO

This study reports the electrical transport characteristics of Si(1-x)Gex (x=0-0.3) nanowires. Nanowires with diameters of 50-100 nm were grown on Si substrates. The valence band spectra from the nanowires indicate that energy band gap modulation is readily achievable using the Ge content. The structural characterization showed that the native oxide of the Si(1-x)Gex nanowires was dominated by SiO2; however, the interfaces between the nanowire and the SiO2 layer consisted of a mixture of Si and Ge oxides. The electrical characterization of a nanowire field effect transistor showed p-type behavior in all Si(1-x)Gex compositions due to the Ge-O and Si-O-Ge bonds at the interface and, accordingly, the accumulation of holes in the level filled with electrons. The interfacial bonds also dominate the mobility and on- and off-current ratio. The large interfacial area of the nanowire, together with the trapped negative interface charge, creates an appearance of p-type characteristics in the Si(1-x)Gex alloy system. Surface or interface structural control, as well as compositional modulation, would be critical in realizing high-performance Si(1-x)Gex nanowire devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA