Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Small ; : e2406018, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101351

RESUMO

Although various electrocatalysts have been developed to ameliorate the shuttle effect and sluggish Li-S conversion kinetics, their electrochemical inertness limits the sufficient performance improvement of lithium-sulfur batteries (LSBs). In this work, an electrochemically active MoO3/TiN-based heterostructure (MOTN) is designed as an efficient sulfur host that can improve the overall electrochemical properties of LSBs via prominent lithiation behaviors. By accommodating Li ions into MoO3 nanoplates, the MOTN host can contribute its own capacity. Furthermore, the Li intercalation process dynamically affects the electronic interaction between MoO3 and TiN and thus significantly reinforces the built-in electric field, which further improves the comprehensive electrocatalytic abilities of the MOTN host. Because of these merits, the MOTN host-based sulfur cathode delivers an exceptional specific capacity of 2520 mA h g-1 at 0.1 C. Furthermore, the cathode exhibits superior rate capability (564 mA h g-1 at 5 C), excellent cycling stability (capacity fade rate of 0.034% per cycle for 1200 cycles at 2 C), and satisfactory areal capacity (6.6 mA h cm-2) under a high sulfur loading of 8.3 mg cm-2. This study provides a novel strategy to develop electrochemically active heterostructured electrocatalysts and rationally manipulate the built-in electric field for achieving high-performance LSBs.

2.
Fish Physiol Biochem ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102012

RESUMO

Global warming significantly impacts aquatic ecosystems, with changes in the salt environment negatively affecting the physiological responses of fish. We investigated the impact of hyposalinity on the physiological responses and intestinal microbiota of Sebastes schlegelii under the context of increased freshwater influx due to climate change. We focused on the osmoregulatory capacity, oxidative stress responses, and alterations in the intestinal microbiome of S. schlegelii under low-salinity conditions. Our findings revealed compromised osmoregulatory capacity in S. schlegelii under low-salinity conditions, accompanied by the activation of oxidative stress responses, indicating physiological adaptations to cope with environmental stress. Specifically, changes in Na+/K+-ATPase (NKA) activity in gill tissues were associated with decreased osmoregulatory capacity. Furthermore, the analysis of the intestinal microbiome led to significant changes in microbial diversity. Exposure to low-salinity environments led to dysbiosis, with notable decreases in the relative abundance of Gammaproteobacteria at the class level and specific genera such as Enterovibrio, and Photobacterium. Conversely, Bacilli classes, along with genera like Mycoplasma, exhibited increased proportions in fish exposed to low-salinity conditions. These findings underscore the potential impact of environmental salinity changes on the adaptive capacity of fish species, particularly in the context of aquaculture. Moreover, they highlight the importance of considering both physiological and microbial responses in understanding the resilience of aquatic organisms to environmental stress. Additionally, they highlight the importance of intestinal microbiota analyses in understanding the immune system and disease management in fish.

3.
Vaccines (Basel) ; 12(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39066425

RESUMO

BACKGROUND: The COVID-19 pandemic has exacerbated existing healthcare disparities among American Indian/Alaska Native (AI/AN) populations rooted in historical traumas and systemic marginalization. METHODS: This study conducted at a single Indian Health Service (IHS) clinic in central Michigan evaluates two educational interventions for enhancing COVID-19 knowledge and attitudes in a sample AI/AN population. Utilizing a pre/post-intervention prospective study design, participants received either a video or infographic educational intervention, followed by a survey assessing their COVID-19 knowledge and attitudes. RESULTS: The results indicate significant improvements in knowledge and attitudes post-intervention, with both modalities proving effective. However, specific factors such as gender, political affiliation, and place of residence influenced COVID-19 attitudes and knowledge, emphasizing the importance of tailored interventions. CONCLUSIONS: Despite limitations, this study highlights the critical role of educational interventions in addressing vaccine hesitancy and promoting health equity within AI/AN communities. Moving forward, comprehensive strategies involving increased Indian Health Service funding, culturally relevant interventions, and policy advocacy are crucial in mitigating healthcare disparities and promoting health equity within AI/AN communities.

4.
Nat Commun ; 15(1): 4672, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824151

RESUMO

The oxygen evolution reaction, which involves high overpotential and slow charge-transport kinetics, plays a critical role in determining the efficiency of solar-driven water splitting. The chiral-induced spin selectivity phenomenon has been utilized to reduce by-product production and hinder charge recombination. To fully exploit the spin polarization effect, we herein propose a dual spin-controlled perovskite photoelectrode. The three-dimensional (3D) perovskite serves as a light absorber while the two-dimensional (2D) chiral perovskite functions as a spin polarizer to align the spin states of charge carriers. Compared to other investigated chiral organic cations, R-/S-naphthyl ethylamine enable strong spin-orbital coupling due to strengthened π-π stacking interactions. The resulting naphthyl ethylamine-based chiral 2D/3D perovskite photoelectrodes achieved a high spin polarizability of 75%. Moreover, spin relaxation was prevented by employing a chiral spin-selective L-NiFeOOH catalyst, which enables the secondary spin alignment to promote the generation of triplet oxygen. This dual spin-controlled 2D/3D perovskite photoanode achieves a 13.17% of applied-bias photon-to-current efficiency. Here, after connecting the perovskite photocathode with L-NiFeOOH/S-naphthyl ethylamine 2D/3D photoanode in series, the resulting co-planar water-splitting device exhibited a solar-to-hydrogen efficiency of 12.55%.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38945429

RESUMO

High ocean temperatures caused by global warming induce oxidative stress in aquatic organisms. Melatonin treatment and irradiation using red light-emitting diodes (LEDs) have been reported to reduce oxidative stress in a few aquatic organisms. However, the effects of red LED irradiation and melatonin injection on the antioxidant capacity and degree of apoptosis in abalones, which are nocturnal organisms, have not yet been reported. In this study, we compared the expression levels of antioxidant enzymes, total antioxidant capacity, and the degree of apoptosis in abalones subjected to red LED irradiation and melatonin treatment. The results revealed that at high water temperatures (25 °C), the mRNA expression levels of the superoxide dismutase (SOD) and glutathione peroxidase (GPx) genes and the antioxidant activity of SOD decreased in abalones in the red-LED irradiated and melatonin-treated groups compared with those in abalones in the control group. Although high water temperatures induced DNA damage in the abalone samples, the degree of apoptosis was lower in the red-LED irradiated and melatonin-treated groups than in the control group. Overall, the abalones in the melatonin-treated and red-LED irradiated groups showed reduced oxidative stress and increased antioxidant enzyme levels under thermal stress compared with those in the control group. Therefore, red LED irradiation is a promising alternative to melatonin treatment, which is difficult to administer continuously for a long time, for protecting abalones from oxidative stress.

6.
J Exp Zool A Ecol Integr Physiol ; 341(5): 487-498, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38390697

RESUMO

The effects of red light-emitting diode (LED) light irradiation (630 nm, 0.5 W/m2) and melatonin (10-8 and 10-7 M) on oxidative stress and physiological responses in abalones exposed to high temperatures (28°C) were investigated. Changes in messenger RNA (mRNA) expressions of melatonin receptor (MT-R), heat shock protein 70 (HSP70), and antioxidant enzymes, as well as alterations in H2O2 levels in the hemolymph, were examined. The results revealed that high-temperature-stressed abalones treated with melatonin injections or exposed to red LED light showed a significant increase in MT-R mRNA expression, while HSP70 mRNA expression decreased. Notably, HSP70 mRNA expression levels in the red LED light-irradiated group were similar to those in the group injected with 10-8 M melatonin after 24 h exposure. Abalones treated with melatonin at 20°C or irradiated with red LED light exhibited decreased H2O2 levels and reduced antioxidant enzyme mRNA expression compared with those of the control group. However, the high-temperature environment induced oxidative stress in abalones, leading to increased antioxidant enzyme mRNA expression compared with that under 20°C conditions. Moreover, abalones exposed to high-temperature stress exhibited hepatopancreatic DNA damage, which was attenuated by melatonin treatment or red LED light irradiation. Hence, red LED light reduces oxidative stress, boosts antioxidant enzymes, and alleviates DNA damage in high-temperature-stressed abalones, akin to 10-8 M melatonin treatment. Therefore, considering the practical challenges of continuous melatonin administration to abalones, utilizing red LED light emerges as a practical, effective alternative to protect abalones from oxidative stress compared to 10-8 M melatonin treatment.


Assuntos
Antioxidantes , Gastrópodes , Melatonina , Luz Vermelha , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Gastrópodes/efeitos da radiação , Temperatura Alta/efeitos adversos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Peróxido de Hidrogênio , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Receptores de Melatonina/metabolismo , Receptores de Melatonina/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
9.
Fish Shellfish Immunol ; 144: 109277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072138

RESUMO

Along with environmental pollution caused by rapid economic development and industrialization, plastic waste is emerging as a global concern in relation to marine ecosystems and human health. Among the microplastics, fiber-type microfibers (MF) and bisphenol A (BPA), which are widely used as plasticizers, do not decompose well in the ocean, and tend to accumulate in organisms, generating an increased oxidative stress response. This study investigated the abalones' antioxidant and cell death responses following exposure to the environmental pollutants MF and BPA. Levels of malondialdehyde (MDA) and DNA damage increased over time, demonstrating the degree of lipid peroxidation and DNA damage in abalones exposed to individual and combined environmental conditions of MF and BPA. Compared to the single MF and BPA exposure groups, the combined exposure group showed a higher expression of antioxidant enzymes. A similar pattern was seen in the expression of the apoptosis enzyme caspase-3. Both MF and BPA caused oxidative stress and antioxidant enzymes were expressed to alleviate it, but it is believed that cell damage occurred because the stress level exceeded the allowed range.


Assuntos
Antioxidantes , Gastrópodes , Humanos , Animais , Antioxidantes/metabolismo , Microplásticos , Plásticos/toxicidade , Bioacumulação , Ecossistema , Estresse Oxidativo , Gastrópodes/genética , Gastrópodes/metabolismo
10.
Ecotoxicol Environ Saf ; 270: 115825, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101975

RESUMO

Microplastics (MP) are harmful, causing stress in aquatic species and acting as carriers of hydrophobicity. In aquatic environments, benzo[α]pyrene (BaP) is an endocrine-disrupting chemical that accumulates in the body and causes toxic reactions in living organisms. We investigated the effects of single and combined microbead (MB) and BaP environments on goldfish antioxidant response and apoptosis. For 120 h, goldfish were exposed to single (MB10, MB100, and BaP5) and combined (MB10+BaP5 and MB100+BaP5) environments of 10 and 100 beads/L of 0.2 µm polystyrene MB and 5 µg/L BaP. We measured MB and BaP bioaccumulation as well as plasma parameters including ALT, AST, and glucose. The level of oxidative stress was determined by evaluating lipid peroxidation (LPO) and total antioxidant capacity (TAC) in plasma, as well as antioxidant-related genes for superoxide dismutase and catalase (SOD and CAT) and caspase-3 (Casp3) mRNA expression in liver tissue. The TUNEL assay was used to examine SOD in situ hybridization and apoptosis in goldfish livers. Except for the control group, plasma LPO levels increased at the end of the exposure period in all experimental groups. TAC increased up to 24 h of exposure and then maintained a similar level until the trial ended. SOD, CAT, and Casp3 mRNA expression increased substantially up to 120 h as the exposure concentration and time increased. The TUNEL assay revealed more signals and apoptotic signals in the combined exposure environments as a consequence of SOD in situ hybridization than in single exposure environments. These results suggest that combined exposure to toxic substances causes oxidative stress in organisms, which leads to apoptosis.


Assuntos
Antioxidantes , Carpa Dourada , Pirenos , Animais , Antioxidantes/metabolismo , Carpa Dourada/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Bioacumulação , Microesferas , Plásticos/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo
11.
RSC Adv ; 13(46): 32833-32841, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37942454

RESUMO

We investigated the oxidation of phenol by perborate-a newly proposed oxidant-in the presence of iron-bearing and carbonaceous materials through batch experiments. We hypothesized that the oxidation of phenol by perborate was enhanced due to the formation of reactive oxygen species (ROS) in the presence of iron-bearing or carbonaceous materials. Zero-valent iron and ferrous iron (Fe2+) promoted the oxidation of phenol by perborate. Biochar, granular activated carbon, an anode carbonaceous material recovered from a spent Li-ion battery, and graphite also accelerated the oxidation of phenol by perborate. Quenching experiments with radical scavengers and electron paramagnetic resonance (EPR) analysis revealed that hydroxyl (˙OH) and superoxide (O2˙-) radicals were generated and enhanced the degradation of phenol in the perborate systems. Singlet oxygen (1O2) was involved in the iron-bearing material-perborate systems. Moreover, we found that Persil®, a commercial perborate detergent, enhances the oxidation of phenol in the presence of iron-bearing and carbonaceous materials. Our results suggest that perborate can be used for advanced oxidation processes to remediate recalcitrant organic contaminants in natural environments and engineered systems.

12.
Ecotoxicol Environ Saf ; 265: 115469, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742571

RESUMO

This study aimed to determine the toxicity standard and potential risks and effects of polyamide (PA) exposure on neurotoxicity, stress indicators, and immune responses in juvenile crucian carp Carassius carassius. Numerous microplastics (MPs) exists within aquatic environments, leading to diverse detrimental impacts on aquatic organisms. The C. carassius (mean weight, 23.7 ± 1.6 g; mean length, 13.9 ± 1.4 cm) were exposed to PA concentrations of 0, 4, 8, 16, 32 and 64 mg/L for 2 weeks. Among the neurotransmitters, the acetylcholinesterase (AChE) activity in the liver, gill, and intestine of C. carassius was significantly inhibited by PA exposure. Stress indicators such as cortisol and heat shock protein 70 (HSP70) in the liver, gill, and intestine of C. carassius were significantly increased, while immune responses to lysozyme and immunoglobulin M (IgM) were significantly decreased. Our study demonstrates the toxic effects of MP exposure on crucian carp's neurotoxicity, stress indicators, and immune responses.

13.
Aquat Toxicol ; 263: 106684, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37677861

RESUMO

We confirmed antioxidant-related gene expression, bioaccumulation, and cell damage following exposure to various microplastics in vivo and in vitro in the goldfish Carassius auratus. Exposure of C. auratus to a 500 µm fiber-type microplastic environment (MF; 10 and 100 fibers/L) and two sizes (0.2 and 1.0 µm) of beads (MB; 10 and 100 beads/L) for 120 h increased superoxide dismutase (SOD) mRNA expression in the liver until 24 h followed by a decrease. Whereas, catalase (CAT) mRNA expression increased from 12 h to the end of the in vivo experiment. In vitro experiments were conducted with diluted microfibers (1 and 5 fibers/L) and microbeads (1 and 5 beads/L) using cultured liver cells. The results of SOD and CAT mRNA expression analysis conducted in vitro showed a tendency similar to those of experiments conducted in vivo. The H2O2 level increased in the high-concentration experimental groups compared with that in the low-concentration groups of 0.2-µm beads. In addition, the H2O2 level increased in both MF and MB groups from 12 h of exposure. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in plasma were used as indicators of liver damage in fish. The ALT and AST levels increased up to 120 h after exposure. Caspase-3 (casp-3) mRNA expression was higher in the MB group than in the MF group. We visually confirmed liver casp-3 mRNA signals using in situ hybridization. The degree of DNA damage in the MF and MB high-concentration groups increased with the exposure time. The tail length and percent of DNA in the tail of the MB group were significantly higher than those of the MF group, confirming that DNA damage was greater in the MB group. Both fiber- and bead-type microplastics induced oxidative stress in C. auratus, but the bead-type induced greater stress than the fiber-type.


Assuntos
Antioxidantes , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos , Carpa Dourada/genética , Carpa Dourada/metabolismo , Bioacumulação , Peróxido de Hidrogênio/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fígado/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-37394129

RESUMO

Microplastics, owing to their hydrophobic properties and the various chemicals used in their production, can act as carriers of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). In this study, we exposed the goldfish Carassius auratus to benzo[α]pyrene (BaP, 10 µg/L), a representative PAH, and micro-polystyrene plastic (MP; 10 and 100 beads/L), of size 1.0 µm, as a single or complex environmental stressor, and evaluated the stress response and the resulting DNA damage. The expression of CRH and ACTH mRNA in the pituitary gland and hypothalamus, of the hypothalamus-pituitary-interrenal (HPI) axis, increased significantly after 6 h of exposure. Plasma cortisol levels showed a similar trend to the expression of stress-regulating genes along the HPI axis, and a significant increase was observed in the combined exposure groups (BaP + LMP [low-concentration MP] and BaP + HMP [high-concentration MP]) compared to those in the single exposure group. H2O2 concentration and CYP1A1 and MT mRNA expression levels in the liver were significantly higher in the combined exposure groups compared with in the single exposure groups. In situ hybridization revealed a similar pattern of MT mRNA expression, and many signals were observed in the BaP + HMP group. Furthermore, the BaP + HMP group showed more DNA damage, and the degree of DNA damage increased with exposure time for all experimental groups, except for the control group. Therefore, exposure to BaP and MP alone can induce stress in goldfish; however, when a combination of both substances is provided, their synergistic effect leads to increased stress and DNA damage. MP was confirmed to be a more serious stress-inducing factor in goldfish than BaP, based on the expression levels of stress-regulating genes along the HPI axis.


Assuntos
Plásticos , Poliestirenos , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Benzo(a)pireno/toxicidade , Peróxido de Hidrogênio/metabolismo , Sistema Endócrino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico
16.
Environ Res ; 236(Pt 2): 116600, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429393

RESUMO

Cadmium (Cd) in aquatic environments can cause environmental toxicity to fish and induce oxidative stress owing to an excessive production of reactive oxygen species in fish bodies. Fish have developed various antioxidant systems to protect themselves from reactive oxygen species; thus, a change in antioxidant responses in fish can be a criterion for evaluating oxidative stress resulting from Cd exposure. Because Cd exposure may be recognized as an exogenous substance by a fish body, it may lead to the stimulation or suppression of its immune system. Various immune responses can be assessed to evaluate Cd toxicity in fish. This review aimed to identify the impacts of Cd exposure on oxidative stress and immunotoxicity in fish as well as identify accurate indicators of Cd toxicity in aquatic ecosystems.

17.
Environ Toxicol Pharmacol ; 102: 104199, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37391052

RESUMO

The purpose of this study is to investigate the impact of microplastics (MPs) on fish and to confirm the toxic effects of MPs on fish, as well as to clarify the standard indicators. MPs are present in a large amount in the aquatic environment and can have various adverse effects on aquatic animals. Crucian carp, Carassius carassius (mean weight, 23.7 ± 1.6 g; mean length, 13.9 ± 1.4 cm), were exposed to PA (Polyamide) concentrations of 0, 4, 8, 16, 32 and 64 mg/L for 2 weeks. The PA accumulation profile in C. carassius decreased from the intestine to the gill to the liver. Hematological parameters such as red blood cell (RBC) counts, hemoglobin (Hb), and hematocrit (Ht) notably decreased at high levels of PA exposure. Plasma components such as calcium, magnesium, glucose, cholesterol, total protein, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were significantly altered by PA exposure. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutathione (GSH) of liver, gill and intestine significantly increased following PA exposure. The results of this study suggest that MP exposure affects the hematological physiology and antioxidant responses in C. carassius as well as accumulation in specific tissues.


Assuntos
Carpas , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Antioxidantes/farmacologia , Plásticos , Nylons/metabolismo , Nylons/farmacologia , Microplásticos/toxicidade , Glutationa/metabolismo , Fígado , Poluentes Químicos da Água/metabolismo
18.
J Environ Manage ; 342: 118237, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267764

RESUMO

This review describes the applicability of biofloc technology (BFT) to future aquaculture technologies. BFT is considered an innovative alternative for solving the problems of traditional aquaculture (for example, environmental pollution, high maintenance costs, and low productivity). Extensive research is being conducted to apply BFT to breed and raise many aquatic animal species. In BFT, maintaining an appropriate C:N ratio by adding a carbon source promotes the growth of microorganisms in water and maintains the aquaculture water quality through microbial processes such as nitrification. For the efficient use and sustainability of BFT, various factors such as total suspended solids, water turbidity, temperature, dissolved oxygen, pH, and salinity, stocking density, and light should be considered. The application of the transformative fourth industrial revolution technologies, Information and Communications Technology (ICT) and Internet of Things (IoT), to aquaculture can reduce the risk factors and manual interventions in aquaculture through automation and intelligence. The combination of ICT/IoT with BFT can enable real-time monitoring of the necessary elements of BFT farming using various sensors, which is expected to increase productivity by ensuring the growth and health of the organisms being reared.


Assuntos
Aquicultura , Nitrificação , Animais , Tecnologia , Qualidade da Água , Fatores de Risco
19.
Antioxidants (Basel) ; 12(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237869

RESUMO

Ocean warming and acidification can induce oxidative stress in marine species, resulting in cellular damage and apoptosis. However, the effects of pH and water temperature conditions on oxidative stress and apoptosis in disk abalone are poorly understood. This study investigated, for the first time, the effects of different water temperatures (15, 20, and 25 °C) and pH levels (7.5 and 8.1) on oxidative stress and apoptosis in disk abalone by estimating levels of H2O2, malondialdehyde (MDA), dismutase (SOD), catalase (CAT), and the apoptosis-related gene caspase-3. We also visually confirmed apoptotic effects of different water temperatures and pH levels via in situ hybridization and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The levels of H2O2, MDA, SOD, CAT, and caspase-3 increased under low/high water temperature and/or low pH conditions. Expression of the genes was high under high temperature and low pH conditions. Additionally, the apoptotic rate was high under high temperatures and low pH conditions. These results indicate that changes in water temperature and pH conditions individually and in combination trigger oxidative stress in abalone, which can induce cell death. Specifically, high temperatures induce apoptosis by increasing the expression of the apoptosis-related gene caspase-3.

20.
Environ Toxicol Pharmacol ; 101: 104159, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245611

RESUMO

Increased ocean temperature due to global warming affects the health and immunity of fish. In this study, juvenile Paralichthys olivaceus were exposed to high temperature after pre-heat (Acute: Acute heat shock at 32 °C, AH-S: Acquired heat shock at 28 °C & short recovery (2 h) and heat shock at 32 °C, AH-L: acquired heat shock at 28 °C and long recovery (2 days), AH-LS: acquired heat shock at 28 °C & long (2 days) + short (2 h) recovery). Heat shock after pre-heat significantly upregulated various immune-related genes, including interleukin 8 (IL-8), c-type lysozyme (c-lys), immunoglobulin M (IgM), Toll-like receptor 3 (tlr3), major histocompatibility complex IIα (mhcIIα) and cluster of differentiation 8α (cd8α) in the liver and brain of P. olivaceus. This study showed pre-exposure to high temperatures below the critical temperature can activate fish immunity and increase tolerance to high temperatures.


Assuntos
Doenças dos Peixes , Linguado , Animais , Linguado/genética , Temperatura , Água , Temperatura Alta , Peixes/genética , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA