Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 24(7): 2421-2427, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319957

RESUMO

We demonstrate excitatory and inhibitory properties in a single heterostructure consisting of two quantum dots/graphene synaptic elements using linearly polarized monochromatic light. Perovskite quantum dots and PbS quantum dots were used to increase and decrease photocurrent weights, respectively. The polarization-dependent photocurrent was realized by adding a polarizer in the middle of the PbS quantum dots/graphene and perovskite quantum dots/graphene elements. When linearly polarized light passed through the polarizer, both the lower excitatory and upper inhibitory devices were activated, with the lower device with the stronger response dominating to increase the current weight. In contrast, the polarized light was blocked by the polarizer, and the above device was only operated, reducing the current weight. Furthermore, two orthogonal polarizations of light were used to perform the sequential processes of potentiation and habituation. By adjustment of the polarization angle of light, not only the direction of the current weight but also its level was altered.

2.
Light Sci Appl ; 12(1): 118, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188669

RESUMO

The development of memory devices with functions that simultaneously process and store data is required for efficient computation. To achieve this, artificial synaptic devices have been proposed because they can construct hybrid networks with biological neurons and perform neuromorphic computation. However, irreversible aging of these electrical devices causes unavoidable performance degradation. Although several photonic approaches to controlling currents have been suggested, suppression of current levels and switching of analog conductance in a simple photonic manner remain challenging. Here, we demonstrated a nanograin network memory using reconfigurable percolation paths in a single Si nanowire with solid core/porous shell and pure solid core segments. The electrical and photonic control of current percolation paths enabled the analog and reversible adjustment of the persistent current level, exhibiting memory behavior and current suppression in this single nanowire device. In addition, the synaptic behaviors of memory and erasure were demonstrated through potentiation and habituation processes. Photonic habituation was achieved using laser illumination on the porous nanowire shell, with a linear decrease in the postsynaptic current. Furthermore, synaptic elimination was emulated using two adjacent devices interconnected on a single nanowire. Therefore, electrical and photonic reconfiguration of the conductive paths in Si nanograin networks will pave the way for next-generation nanodevice technologies.

3.
Environ Sci Pollut Res Int ; 30(29): 74186-74195, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37204581

RESUMO

Although studies on microplastics are increasing every year, still very little is known about their toxicity. Especially for plant species, even studies of uptake of microplastics are only few, not to mention phytotoxicity of microplastics. Therefore, we conducted a pilot study on the phytotoxicity of 1-µm-sized fluorescent microplastics (FMPs) on the free-floating aquatic plants Spirodela polyrhiza and Salvinia natans and the emergent aquatic plant Phragmites australis using 0.1% and 0.01% FMP treatment. Furthermore, uptake of FMPs by plants was verified by detecting fluorescence of FMPs by laser. A free-floating aquatic plant S. polyrhiza and emergent aquatic plant P. australis showed significantly decreased harvested biomass after 3 weeks indicating phytotoxicity of FMPs, but S. natans did not show any differences of harvested biomass or chlorophyll contents among treatments. Detection of fluorescence from plant leaves provided evidence of active FMPs uptake by plants. The emission spectra of plant leaves in 0.1% FMP treatment showed similar peaks to those of free fluorescent microplastics, providing a firm evidence of FMPs uptake by plants. This study is one of the pioneering studies to explore fluorescent microplastic uptake and toxicity in aquatic plants and therefore provides a baseline for further studies.


Assuntos
Microplásticos , Plásticos , Microplásticos/toxicidade , Projetos Piloto , Plantas
4.
Sci Adv ; 7(43): eabj3176, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669464

RESUMO

Quantum confinement in transition metal dichalcogenides (TMDCs) enables the realization of deterministic single-photon emitters. The position and polarization control of single photons have been achieved via local strain engineering using nanostructures. However, most existing TMDC-based emitters are operated by optical pumping, while the emission sites in electrically pumped emitters are uncontrolled. Here, we demonstrate electrically driven single-photon emitters located at the positions where strains are induced by atomic force microscope indentation on a van der Waals heterostructure consisting of graphene, hexagonal boron nitride, and tungsten diselenide. The optical, electrical, and mechanical properties induced by the local strain gradient were systematically analyzed. The emission at the indentation sites exhibits photon antibunching behavior with a g(2)(0) value of ~0.3, intensity saturation, and a linearly cross-polarized doublet, at 4 kelvin. This robust spatial control of electrically driven single-photon emitters will pave the way for the practical implementation of integrated quantum light sources.

5.
Chem Commun (Camb) ; 57(40): 4875-4885, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33881425

RESUMO

High quality factor and small mode volume in nanocavities enable the demonstration of efficient nanophotonic devices with low power consumption, strong nonlinearity, and high modulation speed, due to the strong light-matter interaction. In this review, we focus on recent state-of-the-art nanocavities and their applications. We introduce single nanocavities including semiconductor nanowires, plasmonic cavities, and nanostructures based on quasi-bound states in the continuum (quasi-BIC), for laser, photovoltaic, and nonlinear applications. In addition, nanocavity arrays with unique feedback mechanisms, including BIC cavities, parity-time symmetry coupled cavities, and photonic topological cavities, are introduced for laser applications. These various cavity designs and underlying physics in single and array nanocavities are useful for the practical implementation of promising nanophotonic devices.

6.
Nat Commun ; 11(1): 5524, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139701

RESUMO

The incorporation of metal-organic frameworks into advanced devices remains a desirable goal, but progress is hindered by difficulties in preparing large crystalline metal-organic framework films with suitable electronic performance. We demonstrate the direct growth of large-area, high quality, and phase pure single metal-organic framework crystals through chemical vapor deposition of a dimolybdenum paddlewheel precursor, Mo2(INA)4. These exceptionally uniform, high quality crystals cover areas up to 8600 µm2 and can be grown down to thicknesses of 30 nm. Moreover, scanning tunneling microscopy indicates that the Mo2(INA)4 clusters assemble into a two-dimensional, single-layer framework. Devices are readily fabricated from single vapor-phase grown crystals and exhibit reversible 8-fold changes in conductivity upon illumination at modest powers. Moreover, we identify vapor-induced single crystal transitions that are reversible and responsible for 30-fold changes in conductivity of the metal-organic framework as monitored by in situ device measurements. Gas-phase methods, including chemical vapor deposition, show broader promise for the preparation of high-quality molecular frameworks, and may enable their integration into devices, including detectors and actuators.

7.
Adv Mater ; 32(51): e2001996, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32945000

RESUMO

Nanolasers are key elements in the implementation of optical integrated circuits owing to their low lasing thresholds, high energy efficiencies, and high modulation speeds. With the development of semiconductor wafer growth and nanofabrication techniques, various types of wavelength-scale and subwavelength-scale nanolasers have been proposed. For example, photonic crystal lasers and plasmonic lasers based on the feedback mechanisms of the photonic bandgap and surface plasmon polaritons, respectively, have been successfully demonstrated. More recently, nanolasers employing new mechanisms of light confinement, including parity-time symmetry lasers, photonic topological insulator lasers, and bound states in the continuum lasers, have been developed. Here, the operational mechanisms, optical characterizations, and practical applications of these nanolasers based on recent research results are outlined. Their scientific and engineering challenges are also discussed.

8.
Nat Nanotechnol ; 15(1): 29-34, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31740793

RESUMO

Two-dimensional transition-metal dichalcogenide (TMD) crystals are a versatile platform for optoelectronic, catalytic and quantum device studies. However, the ability to tailor their physical properties through explicit synthetic control of their morphology and dimensionality is a major challenge. Here we demonstrate a gas-phase synthesis method that substantially transforms the structure and dimensionality of TMD crystals without lithography. Synthesis of MoS2 on Si(001) surfaces pre-treated with phosphine yields high-aspect-ratio nanoribbons of uniform width. We systematically control the width of these nanoribbons between 50 and 430 nm by varying the total phosphine dosage during the surface treatment step. Aberration-corrected electron microscopy reveals that the nanoribbons are predominantly 2H phase with zig-zag edges and an edge quality that is comparable to, or better than, that of graphene and TMD nanoribbons prepared through conventional top-down processing. Owing to their restricted dimensionality, the nominally one-dimensional MoS2 nanocrystals exhibit photoluminescence 50 meV higher in energy than that from two-dimensional MoS2 crystals. Moreover, this emission is precisely tunable through synthetic control of crystal width. Directed crystal growth on designer substrates has the potential to enable the preparation of low-dimensional materials with prescribed morphologies and tunable or emergent optoelectronic properties.

9.
ACS Appl Mater Interfaces ; 11(23): 21094-21099, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31099238

RESUMO

The development of advanced imaging tools is important for the investigation of the fundamental properties of nanostructures composed of single or multiple nanomaterials. However, complicated preparation processes and irreversible alterations of the samples to be examined are inevitable in most current imaging techniques. In this work, we developed a simple method based on polarization-resolved light scattering measurements to characterize the structural and optical properties of complex nanomaterials. In particular, we examined a single Si nanowire embedded with porous Si segments, in which the porous Si could not be easily distinguished from solid Si by scanning electron microscopy. The dark-field optical images and polarization-resolved scattering spectra showed unique optical features of porous and solid Si. In particular, the porosity, diameter, and number of porous Si segments in the single Si nanowire were identified from the scattering measurements. In addition, we performed systematic optical simulations based on the effective medium model in individual porous and solid Si nanowires. A good agreement between the simulation and measurement results enabled the estimation of the structural parameters of the nanowires, such as diameter and porosity. We believe that our method will be useful for analyzing the structural and optical properties of nanomaterials prior to using complicated and uneconomical imaging tools.

10.
Nano Lett ; 19(2): 1269-1274, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30677304

RESUMO

A porous Si segment in a Si nanowire (NW), when exposed to light, generates a current with a high on/off ratio. This unique feature has been recently used to demonstrate photon-triggered NW devices including transistors, logic gates, and photodetection systems. Here, we develop a reliable and simple procedure to fabricate porous Si segments in chemically synthesized Si NWs for photon-triggered current generation. To achieve this, we employ 100 nm-diameter chemical-vapor-deposition grown Si NWs that possess an n-type high doping level and extremely smooth surface. The NW regions uncovered by electron-beam resist become selectively porous through metal-assisted chemical etching, using Ag nanoparticles as a catalyst. The contact electrodes are then fabricated on both ends of such NWs, and the generated current is measured when the laser is focused on the porous Si segment. The current level is changed by controlling the power of the incident laser and bias voltage. The on/off ratio is measured up to 1.5 × 104 at a forward bias of 5 V. In addition, we investigate the porous-length-dependent responsivity of the NW device with the porous Si segment. The responsivity is observed to decrease for porous segment lengths beyond 360 nm. Furthermore, we fabricate nine porous Si segments in a single Si NW and measure the identical photon-triggered current from each porous segment; this single NW device can function as a high-resolution photodetection system. Therefore, our fabrication method to precisely control the position and length of the porous Si segments opens up new possibilities for the practical implementation of programmable logic gates and ultrasensitive photodetectors.

11.
Proc Natl Acad Sci U S A ; 116(2): 413-421, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30538202

RESUMO

Electronic pacemakers can treat electrical conduction disorders in hearts; however, they are invasive, bulky, and linked to increased incidence of infection at the tissue-device interface. Thus, researchers have looked to other more biocompatible methods for cardiac pacing or resynchronization, such as femtosecond infrared light pulsing, optogenetics, and polymer-based cardiac patches integrated with metal electrodes. Here we develop a biocompatible nongenetic approach for the optical modulation of cardiac cells and tissues. We demonstrate that a polymer-silicon nanowire composite mesh can be used to convert fast moving, low-radiance optical inputs into stimulatory signals in target cardiac cells. Our method allows for the stimulation of the cultured cardiomyocytes or ex vivo heart to beat at a higher target frequency.


Assuntos
Estimulação Cardíaca Artificial/métodos , Matriz Extracelular/química , Raios Infravermelhos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Nanofios/química , Silício/química , Animais , Miocárdio/citologia , Miócitos Cardíacos/citologia , Optogenética/métodos , Ratos
12.
Nano Lett ; 17(12): 7731-7736, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29148810

RESUMO

We report the enhancement of light absorption in Si nanowire photovoltaic devices with one-dimensional dielectric or metallic gratings that are fabricated by a damage-free, precisely aligning, polymer-assisted transfer method. Incorporation of a Si3N4 grating with a Si nanowire effectively enhances the photocurrents for transverse-electric polarized light. The wavelength at which a maximum photocurrent is generated is readily tuned by adjusting the grating pitch. Moreover, the electrical properties of the nanowire devices are preserved before and after transferring the Si3N4 gratings onto Si nanowires, ensuring that the quality of pristine nanowires is not degraded during the transfer. Furthermore, we demonstrate Si nanowire photovoltaic devices with Ag gratings using the same transfer method. Measurements on the fabricated devices reveal approximately 27.1% enhancement in light absorption compared to that of the same devices without the Ag gratings without any degradation of electrical properties. We believe that our polymer-assisted transfer method is not limited to the fabrication of grating-incorporated nanowire photovoltaic devices but can also be generically applied for the implementation of complex nanoscale structures toward the development of multifunctional optoelectronic devices.

13.
Nat Nanotechnol ; 12(10): 963-968, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28785091

RESUMO

Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

14.
ACS Nano ; 11(6): 6131-6138, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28558185

RESUMO

Triboelectric charging involves frictional contact of two different materials, and their contact electrification usually relies on polarity difference in the triboelectric series. This limits the choices of materials for triboelectric contact pairs, hindering research and development of energy harvest devices utilizing triboelectric effect. A progressive approach to resolve this issue involves modification of chemical structures of materials for effectively engineering their triboelectric properties. Here, we describe a facile method to change triboelectric property of a polymeric surface via atomic-level chemical functionalizations using a series of halogens and amines, which allows a wide spectrum of triboelectric series over single material. Using this method, tunable triboelectric output power density is demonstrated in triboelectric generators. Furthermore, molecular-scale calculation using density functional theory unveils that electrons transferred through electrification are occupying the PET group rather than the surface functional group. The work introduced here would open the ability to tune triboelectric property of materials by chemical modification of surface and facilitate the development of energy harvesting devices and sensors exploiting triboelectric effect.

15.
Sci Rep ; 6: 31984, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27534818

RESUMO

Single-Si-nanowire (NW)-based DNA sensors have been recently developed, but their sensitivity is very limited because of high noise signals, originating from small source-drain current of the single Si NW. Here, we demonstrate that chemical-vapor-deposition-grown large-scale graphene/surface-modified vertical-Si-NW-arrays junctions can be utilized as diode-type biosensors for highly-sensitive and -selective detection of specific oligonucleotides. For this, a twenty-seven-base-long synthetic oligonucleotide, which is a fragment of human DENND2D promoter sequence, is first decorated as a probe on the surface of vertical Si-NW arrays, and then the complementary oligonucleotide is hybridized to the probe. This hybridization gives rise to a doping effect on the surface of Si NWs, resulting in the increase of the current in the biosensor. The current of the biosensor increases from 19 to 120% as the concentration of the target DNA varies from 0.1 to 500 nM. In contrast, such biosensing does not come into play by the use of the oligonucleotide with incompatible or mismatched sequences. Similar results are observed from photoluminescence microscopic images and spectra. The biosensors show very-uniform current changes with standard deviations ranging ~1 to ~10% by ten-times endurance tests. These results are very promising for their applications in accurate, selective, and stable biosensing.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanofios/química , Hibridização de Ácido Nucleico/métodos , Sondas de DNA , Grafite/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Nanofios/ultraestrutura , Silício/química , Proteínas Supressoras de Tumor/genética
16.
Sci Rep ; 6: 27145, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250343

RESUMO

Förster resonance energy transfer (FRET), referred to as the transfer of the photon energy absorbed in donor to acceptor, has received much attention as an important physical phenomenon for its potential applications in optoelectronic devices as well as for the understanding of some biological systems. If one-atom-thick graphene is used for donor or acceptor, it can minimize the separation between donor and acceptor, thereby maximizing the FRET efficiency (EFRET). Here, we report first fabrication of a FRET system composed of silica nanoparticles (SNPs) and graphene quantum dots (GQDs) as donors and acceptors, respectively. The FRET from SNPs to GQDs with an EFRET of ∼78% is demonstrated from excitation-dependent photoluminescence spectra and decay curves. The photodetector (PD) responsivity (R) of the FRET system at 532 nm is enhanced by 10(0)∼10(1)/10(2)∼10(3) times under forward/reverse biases, respectively, compared to the PD containing solely GQDs. This remarkable enhancement is understood by network-like current paths formed by the GQDs on the SNPs and easy transfer of the carriers generated from the SNPs into the GQDs due to their close attachment. The R is 2∼3 times further enhanced at 325 nm by the FRET effect.

17.
ACS Appl Mater Interfaces ; 7(43): 24242-6, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26473800

RESUMO

We first report graphene-assisted chemical etching (GaCE) of silicon by using patterned graphene as an etching catalyst. Chemical-vapor-deposition-grown graphene transferred on a silicon substrate is patterned to a mesh with nanohole arrays by oxygen plasma etching using an anodic- aluminum-oxide etching mask. The prepared graphene mesh/silicon is immersed in a mixture solution of hydrofluoric acid and hydro peroxide with various molecular fractions at optimized temperatures. The silicon underneath graphene mesh is then selectively etched to form aligned nanopillar arrays. The morphology of the nanostructured silicon can be controlled to be smooth or porous depending on the etching conditions. The experimental results are systematically discussed based on possible mechanisms for GaCE of Si.

18.
Adv Mater ; 27(16): 2614-20, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25776865

RESUMO

Graphene/Si quantum dot (QD) heterojunction diodes are reported for the first time. The photoresponse, very sensitive to variations in the size of the QDs as well as in the doping concentration of graphene and consistent with the quantum-confinement effect, is remarkably enhanced in the near-ultraviolet range compared to commercially available bulk-Si photodetectors. The photoresponse proves to be dominated by the carriertunneling mechanism.


Assuntos
Equipamentos e Provisões Elétricas , Grafite/química , Nanofios/química , Pontos Quânticos/química , Silício/química , Elétrons , Interações Hidrofóbicas e Hidrofílicas , Lasers , Microscopia Eletrônica de Transmissão , Processos Fotoquímicos , Fótons , Teoria Quântica , Dióxido de Silício/química , Raios Ultravioleta
19.
ACS Appl Mater Interfaces ; 6(23): 20880-6, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25384018

RESUMO

Porous silicon (PSi) is recognized as an attractive building block for photonic devices because of its novel properties including high ratio of surface to volume and high light absorption. We first report near-ultraviolet (UV)-sensitive graphene/PSi photodetectors (PDs) fabricated by utilizing graphene and PSi as a carrier collector and a photoexcitation layer, respectively. Thanks to high light absorption and enlarged energy-band gap of PSi, the responsivity (Ri) and quantum efficiency (QE) of the PDs are markedly enhanced in the near-UV range. The performances of PDs are systemically studied for various porosities of PSi, controlled by varying the electroless-deposition time (td) of Ag nanoparticles for the use of Si etching. Largest gain is obtained at td = 3 s, consistent with the maximal enhancement of Ri and QE in the near UV range, which originates from the well-defined interface at the graphene/PSi junction, as proved by atomic- and electrostatic-force microscopies. Optimized response speed is ∼10 times faster compared to graphene/single-crystalline Si PDs. These and other unique PD characteristics prove to be governed by typical Schottky diode-like transport of charge carriers at the graphene/PSi junctions, based on bias-dependent variations of the band profiles, resulting in novel dark- and photocurrent behaviors.

20.
Nanotechnology ; 25(25): 255203, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24896068

RESUMO

Nonvolatile flash-memory capacitors containing graphene quantum dots (GQDs) of 6, 12, and 27 nm average sizes (d) between SiO2 layers for use as charge traps have been prepared by sequential processes: ion-beam sputtering deposition (IBSD) of 10 nm SiO2 on a p-type wafer, spin-coating of GQDs on the SiO2 layer, and IBSD of 20 nm SiO2 on the GQD layer. The presence of almost a single array of GQDs at a distance of ∼13 nm from the SiO2/Si wafer interface is confirmed by transmission electron microscopy and photoluminescence. The memory window estimated by capacitance-voltage curves is proportional to d for sweep voltages wider than  ± 3 V, and for d = 27 nm the GQD memories show a maximum memory window of 8 V at a sweep voltage of  ± 10 V. The program and erase speeds are largest at d = 12 and 27 nm, respectively, and the endurance and data-retention properties are the best at d = 27 nm. These memory behaviors can be attributed to combined effects of edge state and quantum confinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA