Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Neuroimmunol ; 392: 578371, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788318

RESUMO

SUMO (small ubiquitin like modifier) conjugated proteins have emerged as an important post translational modifier of cellular function. SUMOylation modulates several cellular processes involved in transcriptional regulation of genes, protein-protein interactions and DNA damage and repair. Since abnormalities in SUMOylation has been observed in neoplastic and neurodegenerative disorders, the SUMO pathway has become an attractive site for targeting of new therapies to regulate SUMOylation and reduce disease burden. Conjugation of SUMO to their respective substrates is orchestrated by an enzymatic cascade involving three main enzymes, E1, activation enzyme, E2, conjugating enzyme and E3, a protein ligase. Each of these enzymes are therefore potential "druggable" sites for future therapeutics. SUMOylation is a well-known mechanism by which the innate immune response is regulated in response to viral infections and in the adaptive immune response to tumor immunity. We have shown that small molecules which inhibit the SUMO activation pathway are also capable of inhibiting autoimmune response. TAK981 which forms adducts with SUMO and anacardic acid which inhibits the E1 enzyme of the SUMO pathway were effective in preventing the development of experimental allergic encephalitis (EAE), a mouse model of multiple sclerosis. Anacardic acid and TAK981 inhibited activation of TH17 cells and reduced clinical and pathological injury in IL-17 mediated myelin oligodendrocyte glycoprotein (MOG) induced EAE. Ginkgolic acid, another known inhibitor of SUMO pathway, was also shown to be effective in reducing the severity of inflammatory arthropathies which is also IL-17 mediated. In addition, the increase in the transcription of myelin genes with TAK981 and anacardic acid improved remyelination in experimental models of demyelination. In the present review paper, we examine the mechanism of action of inhibitors of the SUMO pathway on regulating the immune response and the possibility of the use of these agents as therapeutics for MS.


Assuntos
Esclerose Múltipla , Sumoilação , Animais , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Sumoilação/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo
2.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38060328

RESUMO

Acute myeloid leukemia (AML) presents a pressing medical need in that it is largely resistant to standard chemotherapy as well as modern therapeutics, such as targeted therapy and immunotherapy, including anti-programmed cell death protein (anti-PD) therapy. We demonstrate that programmed death-1 homolog (PD-1H), an immune coinhibitory molecule, is highly expressed in blasts from the bone marrow of AML patients, while normal myeloid cell subsets and T cells express PD-1H. In studies employing syngeneic and humanized AML mouse models, overexpression of PD-1H promoted the growth of AML cells, mainly by evading T cell-mediated immune responses. Importantly, ablation of AML cell-surface PD-1H by antibody blockade or genetic knockout significantly inhibited AML progression by promoting T cell activity. In addition, the genetic deletion of PD-1H from host normal myeloid cells inhibited AML progression, and the combination of PD-1H blockade with anti-PD therapy conferred a synergistic antileukemia effect. Our findings provide the basis for PD-1H as a potential therapeutic target for treating human AML.


Assuntos
Evasão da Resposta Imune , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Medula Óssea , Imunidade Celular , Imunoterapia , Leucemia Mieloide Aguda/tratamento farmacológico
3.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966113

RESUMO

Effective eradication of leukemic stem cells (LSCs) remains the greatest challenge in treating acute myeloid leukemia (AML). The immune receptor LAIR-1 has been shown to regulate LSC survival; however, the therapeutic potential of this pathway remains unexplored. We developed a therapeutic LAIR-1 agonist antibody, NC525, that induced cell death of LSCs, but not healthy hematopoietic stem cells in vitro, and killed LSCs and AML blasts in both cell- and patient-derived xenograft models. We showed that LAIR-1 agonism drives a unique apoptotic signaling program in leukemic cells that was enhanced in the presence of collagen. NC525 also significantly improved the activity of azacitidine and venetoclax to establish LAIR-1 targeting as a therapeutic strategy for AML that may synergize with standard-of-care therapies.


Assuntos
Leucemia Mieloide Aguda , Animais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Modelos Animais de Doenças , Células-Tronco Neoplásicas/metabolismo
4.
J Neuroimmunol ; 384: 578219, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37813042

RESUMO

Small ubiquitin like modifiers (SUMO) are reversible posttranslational modifiers of intracellular proteins. In the CNS, expression of myelin genes is regulated by state of SUMOylation of their respective transcription factors. In the immune system, deSUMOylation activates innate immune responses and promotes anti-viral immunity. However, the role played by SUMO in an adaptive immune response and in the development of T cell mediated autoimmune disease has not been previously described. TAK981 is a synthetic small molecule which by forming adducts with SUMO proteins prevents SUMOylation. We examined the expression of myelin genes and their transcription factors following culture with TAK981 in Oligodendrocyte Precursor Cells (OPC). We found that myelin basic protein (MBP), a key myelin protein, is upregulated in OPC in the presence of TAK981. We also found increased expression of transcription factors Sox10 and Myrf, which engage in the expression of MBP. In the Cuprizone model of demyelination/remyelination, animals which were treated with TAK981 showed increased remyelination in areas of demyelination and an increase in the number of maturing oligodendrocytes compared to vehicle treated controls. In in vitro cultures of lymphocytes, TAK981 reduced the expression of TH17 in T cells in mice immunized with MOGp35-55. Following in vivo treatment with TAK981, there was a significant reduction in the clinical and pathological severity in mice immunized to develop experimental allergic encephalitis (EAE). The dual effects of deSUMOylation on remyelination and in regulating an autoimmune adaptive response offers a novel approach to the management of human inflammatory demyelinating diseases such as multiple sclerosis.


Assuntos
Doenças do Sistema Nervoso Central , Doenças Desmielinizantes , Remielinização , Camundongos , Humanos , Animais , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Remielinização/fisiologia , Sumoilação , Interleucina-17 , Diferenciação Celular , Bainha de Mielina/patologia , Oligodendroglia/metabolismo , Cuprizona/toxicidade , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Oncoscience ; 7(1-2): 1-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32258242

RESUMO

MicroRNA-145 (miR-145) plays a suppressive role in the process of tumorigenesis and an important role in induction of autophagy. However, the exact role of miR-145 in therapeutically resistant neuroblastoma cells remain elusive. Herein, we sought to evaluate the effects of miR-145 overexpression in chemo­ and radiation-resistant neuroblastoma cells. We hypothesized that miR-145 affects the aggressiveness of resistant cells by enhancing autophagy. We established Cisplatin-resistant (CDDP-R), Vincristine-resistant (Vin-R), and radiation-resistant (Rad-R) neuroblastoma cells and found that miR-145 expression was significantly decreased in the resistant cells compared to the parental cells. Exogenously expression of miR-145 inhibited oncogenic properties such as proliferation, clonogenicity, anchorage-independent growth, cell migration, and tubule formation in the resistant cells. In addition, we also found that an autophagy protein marker, LC3, was only minimally expressed in the resistant cells. In particular, when miR-145 was overexpressed in the resistant cells, LC3 I and II were expressed and an increased punctate fluorescence of LC3 protein was found indicating the induction of autophagy. Taken together, our data suggests that miR-145 inhibits tumorigenesis and aggressiveness via modulation of autophagy in neuroblastoma.

6.
Oncotarget ; 10(54): 5645-5659, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31608140

RESUMO

Neuroblastoma remains one of the most difficult pediatric solid tumors to treat. In particular, the refractory and relapsing neuroblastomas are highly heterogeneous with diverse molecular profiles. We previously demonstrated that AKT2 plays critical roles in the regulation of neuroblastoma tumorigenesis. Here we hypothesize that targeting AKT2 could block the signal transduction pathways enhanced in chemo- and/or radiation-resistant neuroblastoma cancer stem-like cells. We found cell proliferation and survival signaling pathways AKT2/mTOR and MAPK were enhanced in cisplatin (CDDP)- and radiation-resistant neuroblastoma cells. Blocking these two pathways with specific inhibitors, CCT128930 (AKT2 inhibitor) and PD98059 (MEK inhibitor) decreased cell proliferation, angiogenesis, and cell migration in these resistant cells. We further demonstrated that the resistant cells had a higher sphere-forming capacity with increased expression of stem cell markers CD133, SOX2, ALDH, Nestin, Oct4, and Nanog. Importantly, the tumorsphere formation, which is a surrogate assay for self-renewal, was sensitive to the inhibitors of AKT2 and MAPK. Taken together, our findings suggest that CDDP- and radiation-resistant cancer stem-like neuroblastoma cells might serve as a useful tool to improve the understanding of molecular mechanisms of therapeutic resistance. This may aid in the development of more effective novel treatment strategies and better clinical outcomes in patients with neuroblastoma.

7.
Oncotarget ; 10(49): 5028-5040, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31489113

RESUMO

The lost expression of α-catenin has been found in cancers, and reinstalling α-catenin inhibits tumor growth. Here we hypothesized that the α-N-catenin, a homologous member of α-catenin and neural-specific expressed, functions as a novel tumor suppressor in neural crest-derived tumor, neuroblastoma. We correlated CTNNA2 (encodes α-N-catenin) expression to neuroblastoma disease relapse-free survival probability using publicly accessible human neuroblastoma datasets in R2 platform. The result showed that it negatively correlated to relapse-free survival probability significantly in patients with neuroblastoma with non-MYCN amplified tumor. Conversely, overexpressing CTNNA2 suppressed the neuroblastoma cell proliferation as measuring by the clonogenesis, inhibited anchorage-independent growth with soft agar colony formation assay. Forced expression of CTNNA2 decreased cell migration and invasion. Further, overexpression of CTNNA2 reduced the secretion of angiogenic factor IL-8 and HUVEC tubule formation. Our results show, for the first time, that α-N-catenin is a tumor suppressor in neuroblastoma cells. These findings were further corroborated with in vivo tumor xenograft study, in which α-N-catenin inhibited tumor growth and reduced tumor blood vessel formation. Interestingly, this is only observed in SK-N-AS xenografts lacking MYCN expression, and not in BE(2)-C xenografts with MYCN amplification. Mechanistically, α-N-catenin attenuated NF-κB responsive genes by inhibiting NF-κB transcriptional activity. In conclusion, these data demonstrate that α-N-catenin is a tumor suppressor in non-MYCN-amplified neuroblastomas and it inhibits NF-κB signaling pathway to suppress tumor growth in human neuroblastomas. Therefore, restoring the expression of α-N-catenin can be a novel therapeutic approach for neuroblastoma patients who have the deletion of CTNNA2 and lack of MYCN amplification.

8.
Surgery ; 158(3): 819-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26067464

RESUMO

BACKGROUND: MYCN amplification is a key molecular hallmark of high-risk neuroblastoma. Previously considered an "undruggable" target, MYCN transcription can be disrupted by inhibiting the bromodomain and the extraterminal (BET) domain family of proteins that regulates MYCN transcription epigenetically. JQ1 is a potent, small-molecule BET inhibitor that induces cell-cycle arrest and initiates apoptosis in neuroblastoma. Here, we sought to validate the antitumorigenic effects of JQ1 in neuroblastoma and to evaluate whether blocking N-myc expression with JQ1 promotes neural differentiation. METHODS: We determined the effects in vitro of JQ1 treatment on human neuroblastoma cell growth in both monolayer and sphere-forming conditions. Subcutaneous neuroblastoma xenografts were used for an in vivo study. Western blotting and immunohistochemistry were performed to evaluate the effects on neural differentiation and stem cell markers. RESULTS: JQ1 treatment blocked neuroblastoma cell growth in both monolayer and sphere-forming conditions; JQ1 also attenuated the growth of neuroblastoma xenograft in athymic nude mice. Neurofilament expression was enhanced with JQ1 treatment, indicating that JQ1 induces neuronal differentiation. Sphere forming conditions resulted in increased expression of multiple stem cell markers; these effects were reversed with JQ1 treatment. CONCLUSION: BET inhibition attenuates progression and promotes neural differentiation of neuroblastoma in vitro and in vivo in mice, providing insight into potential clinical applications of BET inhibitors in the treatment of patients with neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Neuroblastoma/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Triazóis/farmacologia , Animais , Antineoplásicos/uso terapêutico , Azepinas/uso terapêutico , Biomarcadores Tumorais/metabolismo , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Distribuição Aleatória , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Genes Cancer ; 5(7-8): 293-302, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25221647

RESUMO

INTRODUCTION: Most drug resistant cancer cells also develop resistance to radiation therapy. In this study, we hypothesized that the dual inhibitor of phosphatidylinositol-3 kinase/mammalian target of rapamycin, NVP-BEZ-235, could potentially enhance radiosensitization in cisplatin-resistance (CDDP-R) non-small cell lung cancer (NSCLC) cells by disabling autophagy as a mechanism of self-preservation. METHODS: We used both in vitro and in vivo approaches, including clonogenic assays, Western blotting, molecular analyses of autophagy and apoptosis, a xenograft model of tumor growth, and immunohistochemical analysis. RESULTS: Basal p-Akt, p-mTOR and p-S6R proteins were enhanced in CDDP-R NSCLC cells. CDDP-R-resistant NSCLC cells are less radiation sensitive in comparison to parental cells (DER=0.82, p=0.02); BEZ-235 enhanced the radiosensitivity (DER=1.2, p=0.01). In addition, combining BEZ-235/RT showed a dramatic tumor growth delay in a mouse xenograft model. Immunohistochemistry showed that combination therapy yielded 50% decrease in caspase-3 activity. Moreover, cell proliferation was reduced by 87.8% and vascular density by 86.1%. These results were associated with a downregulation of PI3K/mTOR signaling pathway and an increase in autophagy. CONCLUSIONS: These findings may be utilized as a novel strategy to enhance the efficacy of radiation therapy in drug-selected non-small cell lung cancer exhibiting radioresistance.

10.
J Pediatr Surg ; 49(1): 159-65, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24439602

RESUMO

PURPOSE: Aurora kinase A (AURKA) overexpression is associated with poor prognosis in neuroblastoma and has been described to upregulate VEGF in gastric cancer cells. However, the exact role of AURKA in the regulation of neuroblastoma tumorigenesis remains unknown. We hypothesize that AURKA-mediated stabilization of N-Myc may affect VEGF expression and angiogenesis in neuroblastoma. Therefore, we sought to determine whether inhibition of AURKA modulates neuroblastoma angiogenesis. METHODS: Cell viability and anchorage-independent growth were determined after silencing AURKA or after treatment with MLN8237, AURKA inhibitor. Immunofluorescence was used to determine N-Myc localization. Human umbilical vein endothelial cells (HUVECs) were used to assess angiogenesis in vitro. Real time-PCR and ELISA were performed to determine VEGF transcription and secretion, respectively. RESULTS: Knockdown of AURKA significantly reduced cell proliferation and inhibited anchorage-independent growth. It also decreased N-Myc protein levels and nuclear localization. AURKA inhibition also decreased HUVECs tubule formation along with VEGF transcription and secretion. Similarly, MLN8237 treatment decreased neuroblastoma tumorigenicity in vitro. CONCLUSIONS: Our findings demonstrate that AURKA plays a critical role in neuroblastoma angiogenesis. AURKA regulates nuclear translocation of N-Myc in neuroblastoma cells, thus potentially affecting cell proliferation, anchorage-independent cell growth, and angiogenesis. Targeting AURKA might provide a novel therapeutic strategy in treating aggressive neuroblastomas.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neovascularização Patológica/tratamento farmacológico , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/farmacologia , Aurora Quinase A/fisiologia , Adesão Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Proteínas de Neoplasias/fisiologia , Neovascularização Patológica/enzimologia , Neovascularização Patológica/etiologia , Neuroblastoma/irrigação sanguínea , Neuroblastoma/tratamento farmacológico , Neuroblastoma/enzimologia , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/fisiologia , RNA Neoplásico/biossíntese , Ensaio Tumoral de Célula-Tronco , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA