RESUMO
We introduce a novel dual redox mediator synthesized by covalently linking ferrocene dicarboxylic acid (FcDA) and thionine (TH) onto a pre-treated glassy carbon electrode. This unique structure significantly enhances the electro-oxidation of dopamine (DA) and the reduction of hydrogen peroxide (H2O2), offering a sensitive detection method for both analytes. The electrode exhibits exceptional sensitivity, selectivity, and stability, demonstrating potential for practical applications in biosensing. It facilitates rapid electron transfer between the analyte and the electrode surface, detecting H2O2 concentrations ranging from 1.5 to 60 µM with a limit of detection (LoD) of 0.49 µM and DA concentrations from 0.3 to 230 µM with an LoD of 0.07 µM. The electrode's performance was validated through real-sample analyses, yielding satisfactory results.
Assuntos
Técnicas Biossensoriais , Dopamina , Técnicas Eletroquímicas , Eletrodos , Compostos Ferrosos , Peróxido de Hidrogênio , Metalocenos , Oxirredução , Fenotiazinas , Dopamina/análise , Compostos Ferrosos/química , Fenotiazinas/química , Metalocenos/química , Limite de DetecçãoRESUMO
The bacterium Bacillus subtilis is a widely used study model and industrial workhorse organism that belongs to the group of gram-positive bacteria. In this study, we report the analysis of a newly sequenced complete genome of B. subtilis strain SRCM117797 along with a comparative genomics of a large collection of B. subtilis strain genomes. B. subtilis strain SRCM117797 has 4,255,638 bp long chromosome with 43.4% GC content and high coding sequence association with macromolecules, metabolism, and phage genes. Genomic diversity analysis of 232 B. subtilis strains resulted in the identification of eight clusters and three singletons. Of 147 B. subtilis strains included, 89.12% had strain-specific genes, of which 6.75% encoded strain-specific insertion sequence family transposases. Our analysis showed a potential role of strain-specific insertion sequence family transposases in intra-cellular accumulation of strain-specific genes. Furthermore, the chromosomal layout of the core genes was biased: overrepresented on the upper half (closer to the origin of replication) of the chromosome, which may explain the fast-growing characteristics of B. subtilis. Overall, the study provides a complete genome sequence of B. subtilis strain SRCM117797, show an extensive genomic diversity of B. subtilis strains and insights into strain diversification mechanism and non-random chromosomal layout of core genes.
Assuntos
Bacillus subtilis , Genoma Bacteriano , Bacillus subtilis/genética , Filogenia , Variação Genética , Composição de Bases , Genômica , Cromossomos Bacterianos/genética , Análise de Sequência de DNARESUMO
Preeclampsia (PE) is a hypertensive disorder of pregnancy with various clinical symptoms. However, traditional markers for the disease including high blood pressure and proteinuria are poor indicators of the related adverse outcomes. Here, we performed systematic proteome profiling of plasma samples obtained from pregnant women with PE to identify clinically effective diagnostic biomarkers. Proteome profiling was performed using TMT-based liquid chromatography-mass spectrometry (LC-MS/MS) followed by subsequent verification by multiple reaction monitoring (MRM) analysis on normal and PE maternal plasma samples. Functional annotations of differentially expressed proteins (DEPs) in PE were predicted using bioinformatic tools. The diagnostic accuracies of the biomarkers for PE were estimated according to the area under the receiver-operating characteristics curve (AUC). A total of 1307 proteins were identified, and 870 proteins of them were quantified from plasma samples. Significant differences were evident in 138 DEPs, including 71 upregulated DEPs and 67 downregulated DEPs in the PE group, compared with those in the control group. Upregulated proteins were significantly associated with biological processes including platelet degranulation, proteolysis, lipoprotein metabolism, and cholesterol efflux. Biological processes including blood coagulation and acute-phase response were enriched for down-regulated proteins. Of these, 40 proteins were subsequently validated in an independent cohort of 26 PE patients and 29 healthy controls. APOM, LCN2, and QSOX1 showed high diagnostic accuracies for PE detection (AUC >0.9 and p < 0.001, for all) as validated by MRM and ELISA. Our data demonstrate that three plasma biomarkers, identified by systematic proteomic profiling, present a possibility for the assessment of PE, independent of the clinical characteristics of pregnant women.
Assuntos
Biomarcadores , Pré-Eclâmpsia , Proteoma , Humanos , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/diagnóstico , Feminino , Gravidez , Biomarcadores/sangue , Adulto , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Lipocalina-2/sangue , Estudos de Casos e ControlesRESUMO
Maclura tricuspidata (MT) leaf demonstrated various health benefits, notably the inhibition of xanthine oxidase (XOD) activity, which is crucial in the management of hyperuricaemia and many diseases related to oxidative stress. This study aimed to identify the primary compound responsible for this inhibitory effect. Through a systematic investigation, MT leaf extracts were subjected to solvent-solvent partitioning using ethyl acetate, n-hexane, n-butanol, and dichloromethane. Further purification involved adsorption and desorption using Amberlite XAD-2 resin, followed by column chromatography on Silica Gel and Sephadex LH-20. The purified compounds were analysed using UPLC-QTOF-MS coupled with NMR spectroscopy. Our findings identified quercetin, a phenolic compound, as the most significant inhibitor of XOD activity in MT leaf, with an IC50 value of 212.92 µg/ml. This is the first report of purifying and identifying a single compound responsible for XOD inhibition in MT.
RESUMO
Extracellular vesicles (EVs) are membrane-surrounded vesicles released by various cell types into the extracellular microenvironment. Although EVs vary in size, biological function, and components, their importance in cancer progression and the potential use of EV molecular species to serve as novel cancer biomarkers have become increasingly evident. Cancer cells actively release EVs into surrounding tissues, which play vital roles in cancer progression and metastasis, including invasion and immune modulation. EVs released by cancer cells are usually chosen as a gateway in the search for biomarkers for cancer. In this review, we mainly focused on molecular profiling of EV protein constituents from breast cancer, emphasizing mass spectrometry (MS)-based proteomic approaches. To further investigate the potential use of EVs as a source of breast cancer biomarkers, we have discussed the use of these proteins as predictive marker candidates. Besides, we have also summarized the key characteristics of EVs as potential therapeutic targets in breast cancer and provided significant information on their implications in breast cancer development and progression. Information provided in this review may help understand the recent progress in understanding EV biology and their potential role as new noninvasive biomarkers as well as emerging therapeutic opportunities and associated challenges.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Vesículas Extracelulares , Espectrometria de Massas , Proteômica , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Vesículas Extracelulares/metabolismo , Feminino , Espectrometria de Massas/métodos , Proteômica/métodosRESUMO
Fire blight is a bacterial disease caused by Erwinia amylovora. In Korea, fire blight was first reported in 2015 in an orchard. If the infection is confirmed, all trees in the orchard must be removed and the orchard must remain closed for 3 years. Since 2020, if the number of trees infected with fire blight is less than 5% of the total trees in the orchard, only the infected tree and adjacent trees are removed in Korea. Three years after removal, the trees can be replanted after confirming that the orchard soil is free from E. amylovora. In this study, a protocol was established for detecting E. amylovora in soil via selective enrichment, using tryptic soy broth with 0.05% bile salts and 50 µg/ml cycloheximide, and real-time polymerase chain reaction. This protocol resulted in a 1,000-times improved detection limit for E. amylovora in soil samples compared to that in unenriched samples. Soil monitoring was performed for orchards where fire blight-infected trees had been removed 3-27 months prior; the selected orchards were monitored every 3 months. Monitoring confirmed that E. amylovora was not present in the soil at any site in any of the orchards. A new detection protocol facilitates the monitoring of E. amylovora in soil and could help permit the replanting of trees in orchards. Also monitoring results provide evidence that trees can be planted earlier.
RESUMO
BACKGROUND AND PURPOSE: Only limited therapeutic agents have been developed for non-alcoholic steatohepatitis (NASH). Glabridin, a promising anti-obesity candidate, has only limited druggability due to its low in vivo chemical stability and bioavailability. Therefore, we developed vutiglabridin (VUTI), which is based on a glabridin backbone, and investigated its mechanism of action in treating NASH in animal models. EXPERIMENTAL APPROACH: Anti-NASH effects of VUTI were determined in in vitro fatty liver models, spheroids of primary human hepatocytes and L02 normal liver cell lines. To identify VUTI possible cellular target/s, biotin-labelled VUTI was synthesized and underwent chemical proteomic analysis. Further, the evaluation of VUTI therapeutic efficacy was carried out using an amylin-NASH and high-fat (HF) diet-induced obese (DIO) mouse models. This was carried out using transcriptomic, lipidomic and proteomic analyses of the livers from the amylin-NASH mouse model. KEY RESULTS: VUTI treatment markedly reduces hepatic steatosis, fibrosis and inflammation by promoting lipid catabolism, activating autophagy and improving mitochondrial dysfunction, all of which are hallmarks of effective NASH treatment. The cellular target of VUTI was identified as paraoxonase 2 (PON2), a newly proposed protein target for the treatment of NASH, VUTI enhanced PON2 activity. The results using PON2 knockdown cells demonstrated that PON2 is important for VUTI- activation of autophagy, promoting mitochondrial function, decreasing oxidative stress and alleviating lipid accumulation under lipotoxic condition. CONCLUSION AND IMPLICATIONS: Our data demonstrated that VUTI is a promising therapeutic for NASH. Targeting PON2 may be important for improving liver function in various immune-metabolic diseases including NASH.
Assuntos
Arildialquilfosfatase , Autofagia , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Arildialquilfosfatase/metabolismo , Autofagia/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismoRESUMO
Telomerase reverse transcriptase (TERT) not only upholds telomeric equilibrium but also plays a pivotal role in multiple non-canonical cellular mechanisms, particularly in the context of aging, cancer, and genomic stability. Though depletion of SIRT1 in mouse embryonic fibroblasts has demonstrated telomere shortening, the impact of SIRT1 on enabling TERT to regulate telomeric homeostasis remains enigmatic. Here, we reveal that SIRT1 directly interacts with TERT, and promotes the nuclear localization and stability of TERT. Reverse transcriptase (RT) domain of TERT and N-terminus of SIRT1 mainly participated in their direct interaction. TERT, concomitantly expressed with intact SIRT1, exhibits nuclear localization, whereas TERT co-expressed with N-terminal-deleted SIRT1 remains in the cytosol. Furthermore, overexpression of SIRT1 enhances the nuclear localization and protein stability of TERT, akin to overexpression of deacetylase-inactive SIRT1, whereas N-terminal-deleted SIRT1 has no effect on TERT. These findings suggest a novel regulatory role of SIRT1 for TERT through direct interaction. This interaction provides new insights into the fields of aging, cancer, and genome stability governed by TERT and SIRT1.
Assuntos
Sirtuína 1 , Telomerase , Animais , Humanos , Camundongos , Núcleo Celular/metabolismo , Estabilidade Enzimática , Células HEK293 , Ligação Proteica , Estabilidade Proteica , Sirtuína 1/metabolismo , Sirtuína 1/genética , Telomerase/metabolismo , Telomerase/genéticaRESUMO
Triazolium cyclodextrin click cluster (+CCC) is an ideal scaffold to specifically bind phosphoinositides (PIPs) via multivalent electrostatic interaction. A new enrichment material, triazolium cyclodextrin click cluster-magnetic agarose bead conjugate (+CCC-MAB), was synthesized and applied to the PIP enrichment of brain tissue. The enriched sample was analyzed using MALDI-TOF MS in negative ion mode without any derivatization. The PIP extract of brain tissue is known to contain abundant lipid interferences. By employing magnetic pull-down separation using +CCC-MAB, we effectively removed the weak-binding interferences in the PIP extract, thereby improving the signal-to-noise ratio (S/N) of the PIPs. Our +CCC-MAB-based PIP enrichment enabled us to analyze 16 PIP species in brain tissue. Six species with high S/N were assigned by MS/MS, while the remaining 10 species with low S/N were characterized by an empirical selection guide based on the biological relevance of PIPs. We conclude that +CCC-MAB-based PIP enrichment is a promising MALDI sample preparation method for specific PIP analysis in brain tissue.
Assuntos
Química Encefálica , Fosfatidilinositóis , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Fosfatidilinositóis/análise , Fosfatidilinositóis/química , Animais , Ciclodextrinas/química , Encéfalo/metabolismo , Sefarose/química , Espectrometria de Massas em Tandem/métodos , Razão Sinal-RuídoRESUMO
Erwinia amylovora is a plant pathogen that causes fire blight on apples and pears. Bacteriophages, which are viruses that selectively infect specific species of bacteria and are harmless to animal cells, have been considered as biological control agents for the prevention of bacterial pathogens. In this study, we aimed to use bacteriophages that infect E. amylovora as biocontrol agents against fire blight. We isolated bacteriophages Fifi044 and Fifi318 infecting E. amylovora, and characterized their morphology, plaque form, and genetic diversity to use as cocktails for disease control. The stabilities of the two phages were investigated at various temperatures and pH values and under sunlight, and long-term storage experiment was conducted for a year. To evaluate whether the two phages were suitable for use in cocktail form, growth curves of E. amylovora were prepared after treating the bacterial cells with single phages and a phage cocktail. In addition, a disease control test was conducted using immature apples and in vitro cultured apple plantlets to determine the biocontrol effects of the phage cocktail. The two phages were morphologically and genetically different, and highly stable up to 50°C and pH value from 4 to 10. The phages showed synergistic effect when used as a cocktail in the inhibition of host bacterial growth and the disease control. This study demonstrated that the potential of the phage cocktail as a biocontrol agent for commercial use.
RESUMO
The purpose of this study is to evaluate the derived concentration guideline levels for unrestricted site reuse the Korea research reactor unit 1 and 2. Distribution coefficients for Co-60 and Sr-90 were derived, and site-specific values of the KRR soil were applied for the DCGLs for the seven target nuclide. The distribution coefficients of Co-60 and Sr-90 were 6,128 and 86.0 mL/g. The DCGLs derived from the dose by age group were 0.053 Bq/g for Co-60 and 45.0 Bq/g for H-3.
RESUMO
In Korea, decommissioning of nuclear power plants and transportation of the decommissioning waste are expected to expand in the near future. It is necessary to confirm that radiological risks to the public and workers are not significant through radiological safety assessment. The objective of this study is to assess the radiological safety for transportation of RPV waste, which is a major decommissioning waste with relatively high level of radioactivity. It was assumed that the waste would be transported to the Gyeongju disposal facility by land transportation. First, the source term and transportation method of the RPV waste were determined, and the external dose rates from the waste were calculated using MCNP. Then, transportation scenarios were assumed under both normal and accident conditions. Under the scenarios, radiation doses were calculated using the RADTRAN. Under normal operation scenarios without a transportation accident, assuming 40 shipments per year, the average individual doses for the public ranged from 6.56×10-6to 2.18×10-2mSv yr-1. The maximum individual doses for only a single shipment ranged from 2.43×10-6to 3.14×10-1mSv. For cargo handlers and vehicle crew members, the average doses were 2.26×101mSv yr-1and 2.95 mSv yr-1, respectively. Under transportation accident scenarios, average individual radiological risks which are product of the radiation doses and the annual accident rates ranged from 1.14×10-11to 1.61×10-10mSv yr-1by transportation route segment when considering the transportation accident rate. Average individual doses assuming transportation accident occurrence ranged from 2.62×10-4to 1.42×10-3mSv. The maximum individual dose under accident conditions was 7.99×10-2mSv. The calculated doses were below the regulatory limits in Korea. However, relatively high doses were observed for cargo handlers and vehicle crew members because of conservative assumptions. This study results can be used as basic data for the radiological safety assessment for the decommissioning waste transportation in the future.
Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Humanos , Centrais Nucleares , Doses de Radiação , Monitoramento de Radiação/métodos , República da CoreiaRESUMO
OBJECTIVES: The carcinogenic risks of CT radiation in children and adolescents remain debated. We aimed to assess the carcinogenic risk of CTs performed in children and adolescents with minor head trauma. METHODS: In this nationwide population-based cohort study, we included 2,411,715 patients of age 0-19 with minor head trauma from 2009 to 2017. We excluded patients with elevated cancer risks or substantial past medical radiation exposure. Patients were categorized into CT-exposed or CT-unexposed group according to claim codes for head CT. The primary outcome was development of hematologic malignant neoplasms. Secondary outcomes included development of malignant solid neoplasms and benign neoplasms in the brain. We measured the incidence rate ratio (IRR) and incidence rate difference (IRD) using G-computation with Poisson regression adjusting for age, sex, hospital setting, and the type of head trauma. RESULTS: Hematologic malignant neoplasms developed in 100 of 216,826 patients during 1,303,680 person-years in the CT-exposed group and in 808 of 2,194,889 patients during 13,501,227 person-years in the CT-unexposed group. For hematologic malignant neoplasms, the IRR was 1.29 (95% CI, 1.03-1.60) and the IRD was 1.71 (95% CI, 0.04-3.37) per 100,000 person-years at risk. The majority of excess hematologic malignant neoplasms were leukemia (IRR, 1.40 [98.3% CI, 1.05-1.87]; IRD, 1.59 [98.3% CI, 0.02-3.16] per 100,000 person-years at risk). There were no between-group differences for secondary outcomes. CONCLUSIONS: Radiation exposure from head CTs in children and adolescents with minor head trauma was associated with an increased incidence of hematologic malignant neoplasms. CLINICAL RELEVANCE STATEMENT: Our study provides a quantitative grasp of the risk conferred by CT examinations in children and adolescents, thereby providing the basis for cost-benefit analyses and evidence-driven guidelines for patient triaging in head trauma. KEY POINTS: ⢠This nationwide population-based cohort study showed that radiation exposure from head CTs in children and adolescents was associated with a higher incidence of hematologic malignant neoplasms. ⢠The incidence rate of hematologic malignant neoplasms in the CT-exposed group was 29% higher than that in the CT-unexposed group (IRR, 1.29 [95% CI, 1.03-1.60]), and there were approximately 1.7 excess neoplasms per 100,000 person-years at risk in the CT-exposed group (IRD, 1.71 [0.04-3.37]). ⢠Our study provides a quantified grasp of the risk conferred by CT examinations in children and adolescents, while controlling for biases observed in previous studies via specifying CT indication and excluding patients with predisposing conditions for cancer development.
Assuntos
Traumatismos Craniocerebrais , Neoplasias Hematológicas , Neoplasias Induzidas por Radiação , Tomografia Computadorizada por Raios X , Humanos , Adolescente , Criança , Feminino , Masculino , Pré-Escolar , Traumatismos Craniocerebrais/diagnóstico por imagem , Traumatismos Craniocerebrais/epidemiologia , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Lactente , Neoplasias Hematológicas/epidemiologia , Estudos de Coortes , Recém-Nascido , Incidência , Adulto Jovem , Taiwan/epidemiologia , Fatores de Risco , Exposição à Radiação/efeitos adversosRESUMO
Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma/metabolismo , Dobramento de Proteína , RNA/metabolismo , Solubilidade , Proteômica , Ponto Isoelétrico , Agregados Proteicos , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Espectrometria de MassasRESUMO
Class C G-protein-coupled receptors (GPCRs) are activated through binding of agonists to the large extracellular domain (ECD) followed by rearrangement of the transmembrane domains (TMDs). GPR156, a class C orphan GPCR, is unique because it lacks an ECD and exhibits constitutive activity. Impaired GPR156-Gi signaling contributes to loss of hearing. Here we present the cryo-electron microscopy structures of human GPR156 in the Go-free and Go-coupled states. We found that an endogenous phospholipid molecule is located within each TMD of the GPR156 dimer. Asymmetric binding of Gα to the phospholipid-bound GPR156 dimer restructures the first and second intracellular loops and the carboxy-terminal part of the elongated transmembrane 7 (TM7) without altering dimer conformation. Our findings reveal that GPR156 is a transducer for phospholipid signaling. Constant binding of abundant phospholipid molecules and the G-protein-induced reshaping of the cytoplasmic face provide a basis for the constitutive activation of GPR156.
Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , FosfolipídeosRESUMO
ABSTRACT: The International Commission on Radiological Protection recommended that the representative person concept should be used in radiation dose assessment of the general public to specify exposed individuals. The objective of this study is to assess radiation doses of the residents around nuclear power plants (NPPs) in relation to the introduction of the representative person concept. Critical group candidates and representative agro-livestock product producing areas were selected around a NPP site by considering radioactive effluents and regional meteorological data, geographical information, etc. A total of five exposure scenarios, including adult (non-fishery, fishery, and commuter), 10-y-old, and 1-y-old groups, were selected for the dose assessment. Generally, radiation doses were higher for 1-y-old, 10-y-old, and adult groups, in that sequence. There was no significant difference among the radiation doses by occupation in adult groups. Radiation dose results calculated by applying the representative person concept and dose assessment method currently used in Korea were compared. Application of the representative person concept results in lower radiation dose by 68.2% due to consideration of actual residential and agro-livestock product producing areas for the radiation dose assessment, by 13.3% due to the application method of habit data for dose calculation, and by 33.3% due to representative value of the dose results. Finally, considering all the factors above, radiation dose calculated by the current dose assessment method was 8.16 × 10 -2 mSv y -1 , while that calculated using the representative person concept was 1.40 × 10 -2 mSv y - 1 (82.8% lower). The results of this study can be used as reference data when introducing the representative person concept to the regulatory systems in Korea.
Assuntos
Monitoramento de Radiação , Proteção Radiológica , Adulto , Humanos , Doses de Radiação , Centrais Nucleares , Proteção Radiológica/métodosRESUMO
Tumor necrosis factor superfamily (TNFSF) resistance contributes to the development and progression of tumors and resistance to various cancer therapies. Tumor-intrinsic alterations involved in the adaptation to the TNFSF response remain largely unknown. Here, we demonstrate that protein kinase C substrate 80K-H (PRKCSH) abundance in lung cancers boosts oncogenic IGF1R activation, leading to TNFSF resistance. PRKCSH abundance is correlated with IGF1R upregulation in lung cancer tissues. Specifically, PRKCSH interacts with IGF1R and extends its half-life. The PRKCSH-IGF1R axis in tumor cells impairs caspase-8 activation, increases Mcl-1 expression, and inhibits caspase-9, leading to an imbalance between cell death and survival. PRKCSH deficiency augmented the antitumor effects of natural killer (NK) cells, representative TNFSF effector cells, in a tumor xenograft IL-2Rg-deficient NOD/SCID (NIG) mouse model. Our data suggest that PRKCSH plays a critical role in TNFSF resistance and may be a potential target to improve the efficacy of NK cell-based cancer therapy.
Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Meia-Vida , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Necrose Tumoral/metabolismo , Proteínas de Ligação ao Cálcio , Glucosidases/metabolismo , Receptor IGF Tipo 1/metabolismoRESUMO
Hyperuricemia, a condition characterized by elevated levels of uric acid in the blood, is known as a risk factor for gout disease. In this study, we isolated a total of 72 MRS-grown colonies and evaluated their purine nucleosidase (PNase) activity. Among the isolated bacteria, Levilactobacillus (L.) brevis LAB42 displayed the highest PNase activity. Our findings also indicate that PNase activity can vary among lactic acid bacterial strains and during different growth phases. Based on the kinetics study, LAB42 consistently exhibits the highest PNase activity. Due to its ability to attach to Caco-2 cells and its resistance to acidic environments and bile exposure, L. brevis LAB42 was chosen for further studies and showed that with the right combination of additives, it has the potential to be an appropriate starter for milk fermentation.