Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Biol ; 22(5): e3002596, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718086

RESUMO

Autism spectrum disorders (ASD) frequently accompany macrocephaly, which often involves hydrocephalic enlargement of brain ventricles. Katnal2 is a microtubule-regulatory protein strongly linked to ASD, but it remains unclear whether Katnal2 knockout (KO) in mice leads to microtubule- and ASD-related molecular, synaptic, brain, and behavioral phenotypes. We found that Katnal2-KO mice display ASD-like social communication deficits and age-dependent progressive ventricular enlargements. The latter involves increased length and beating frequency of motile cilia on ependymal cells lining ventricles. Katnal2-KO hippocampal neurons surrounded by enlarged lateral ventricles show progressive synaptic deficits that correlate with ASD-like transcriptomic changes involving synaptic gene down-regulation. Importantly, early postnatal Katnal2 re-expression prevents ciliary, ventricular, and behavioral phenotypes in Katnal2-KO adults, suggesting a causal relationship and a potential treatment. Therefore, Katnal2 negatively regulates ependymal ciliary function and its deletion in mice leads to ependymal ciliary hyperfunction and hydrocephalus accompanying ASD-related behavioral, synaptic, and transcriptomic changes.


Assuntos
Transtorno do Espectro Autista , Cílios , Epêndima , Camundongos Knockout , Fenótipo , Animais , Masculino , Camundongos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Cílios/metabolismo , Modelos Animais de Doenças , Epêndima/metabolismo , Hipocampo/metabolismo , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Hidrocefalia/fisiopatologia , Katanina/metabolismo , Katanina/genética , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Sinapses/metabolismo , Transcriptoma/genética
2.
Immunity ; 56(9): 2105-2120.e13, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37527657

RESUMO

Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.


Assuntos
Astrócitos , Fagocitose , Estresse Psicológico , Animais , Criança , Humanos , Camundongos , Astrócitos/metabolismo , c-Mer Tirosina Quinase/genética , Hormônios/metabolismo , Sinapses/metabolismo , Estresse Psicológico/metabolismo
4.
Nature ; 611(7936): 585-593, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352225

RESUMO

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Assuntos
Sistema Nervoso Central , Líquido Cefalorraquidiano , Macrófagos , Tecido Parenquimatoso , Animais , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Líquido Cefalorraquidiano/metabolismo , Macrófagos/fisiologia , Meninges/citologia , Reologia , Proteínas da Matriz Extracelular/metabolismo , Envelhecimento/metabolismo , Fagocitose , Endocitose , Interferon gama/metabolismo , Tecido Parenquimatoso/citologia , Humanos
5.
Elife ; 112022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36317872

RESUMO

Social deficit is a major feature of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder, but its neural mechanisms remain unclear. Here, we examined neuronal discharge characteristics in the medial prefrontal cortex (mPFC) of IRSp53/Baiap2-mutant mice, which show social deficits, during social approach. We found a decrease in the proportion of IRSp53-mutant excitatory mPFC neurons encoding social information, but not that encoding non-social information. In addition, the firing activity of IRSp53-mutant neurons was less differential between social and non-social targets. IRSp53-mutant excitatory mPFC neurons displayed an increase in baseline neuronal firing, but decreases in the variability and dynamic range of firing as well as burst firing during social and non-social target approaches compared to wild-type controls. Treatment of memantine, an NMDA receptor antagonist that rescues social deficit in IRSp53-mutant mice, alleviates the reduced burst firing of IRSp53-mutant pyramidal mPFC neurons. These results suggest that suppressed neuronal activity dynamics and burst firing may underlie impaired cortical encoding of social information and social behaviors in IRSp53-mutant mice.


Assuntos
Neurônios , Esquizofrenia , Animais , Camundongos , Neurônios/fisiologia , Células Piramidais/metabolismo , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Nat Commun ; 13(1): 5051, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030255

RESUMO

Autism spectrum disorder is characterized by early postnatal symptoms, although little is known about the mechanistic deviations that produce them and whether correcting them has long-lasting preventive effects on adult-stage deficits. ARID1B, a chromatin remodeler implicated in neurodevelopmental disorders, including autism spectrum disorder, exhibits strong embryonic- and early postnatal-stage expression. We report here that Arid1b-happloinsufficient (Arid1b+/-) mice display autistic-like behaviors at juvenile and adult stages accompanied by persistent decreases in excitatory synaptic density and transmission. Chronic treatment of Arid1b+/- mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first three postnatal weeks prevents synaptic and behavioral deficits in adults. Mechanistically, these rescues accompany transcriptomic changes, including upregulation of FMRP targets and normalization of HDAC4/MEF2A-related transcriptional regulation of the synaptic proteins, SynGAP1 and Arc. These results suggest that chronic modulation of serotonergic receptors during critical early postnatal periods prevents synaptic and behavioral deficits in adult Arid1b+/- mice through transcriptional reprogramming.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Serotonina , Fatores de Transcrição , Animais , Fluoxetina , Haploinsuficiência , Camundongos , Serotonina/metabolismo , Fatores de Transcrição/genética , Proteínas Ativadoras de ras GTPase
8.
Neuron ; 109(22): 3609-3618.e9, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34793707

RESUMO

Mechanisms governing how immune cells and their derived molecules impact homeostatic brain function are still poorly understood. Here, we elucidate neuronal mechanisms underlying T cell effects on synaptic function and episodic memory. Depletion of CD4 T cells led to memory deficits and impaired long-term potentiation. Severe combined immune-deficient mice exhibited amnesia, which was reversible by repopulation with T cells from wild-type but not from IL-4-knockout mice. Behaviors impacted by T cells were mediated via IL-4 receptors expressed on neurons. Exploration of snRNA-seq of neurons participating in memory processing provided insights into synaptic organization and plasticity-associated pathways regulated by immune cells. IL-4Rα knockout in inhibitory (but not in excitatory) neurons was sufficient to impair contextual fear memory, and snRNA-seq from these mice pointed to IL-4-driven regulation of synaptic function in promoting memory. These findings provide new insights into complex neuroimmune interactions at the transcriptional and functional levels in neurons under physiological conditions.


Assuntos
Plasticidade Neuronal , Linfócitos T , Animais , Neurônios GABAérgicos , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia
9.
Commun Biol ; 4(1): 1138, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588597

RESUMO

Many synaptic adhesion molecules positively regulate synapse development and function, but relatively little is known about negative regulation. SALM4/Lrfn3 (synaptic adhesion-like molecule 4/leucine rich repeat and fibronectin type III domain containing 3) inhibits synapse development by suppressing other SALM family proteins, but whether SALM4 also inhibits synaptic function and specific behaviors remains unclear. Here we show that SALM4-knockout (Lrfn3-/-) male mice display enhanced contextual fear memory consolidation (7-day post-training) but not acquisition or 1-day retention, and exhibit normal cued fear, spatial, and object-recognition memory. The Lrfn3-/- hippocampus show increased currents of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors (GluN2B-NMDARs), but not α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors (AMPARs), which requires the presynaptic receptor tyrosine phosphatase PTPσ. Chronic treatment of Lrfn3-/- mice with fluoxetine, a selective serotonin reuptake inhibitor used to treat excessive fear memory that directly inhibits GluN2B-NMDARs, normalizes NMDAR function and contextual fear memory consolidation in Lrfn3-/- mice, although the GluN2B-specific NMDAR antagonist ifenprodil was not sufficient to reverse the enhanced fear memory consolidation. These results suggest that SALM4 suppresses excessive GluN2B-NMDAR (not AMPAR) function and fear memory consolidation (not acquisition).


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Medo/fisiologia , Consolidação da Memória/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Camundongos , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Nat Commun ; 12(1): 2695, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976205

RESUMO

mTOR signaling, involving mTORC1 and mTORC2 complexes, critically regulates neural development and is implicated in various brain disorders. However, we do not fully understand all of the upstream signaling components that can regulate mTOR signaling, especially in neurons. Here, we show a direct, regulated inhibition of mTOR by Tanc2, an adaptor/scaffolding protein with strong neurodevelopmental and psychiatric implications. While Tanc2-null mice show embryonic lethality, Tanc2-haploinsufficient mice survive but display mTORC1/2 hyperactivity accompanying synaptic and behavioral deficits reversed by mTOR-inhibiting rapamycin. Tanc2 interacts with and inhibits mTOR, which is suppressed by mTOR-activating serum or ketamine, a fast-acting antidepressant. Tanc2 and Deptor, also known to inhibit mTORC1/2 minimally affecting neurodevelopment, distinctly inhibit mTOR in early- and late-stage neurons. Lastly, Tanc2 inhibits mTORC1/2 in human neural progenitor cells and neurons. In summary, our findings show that Tanc2 is a mTORC1/2 inhibitor affecting neurodevelopment.


Assuntos
Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neurônios/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Células HEK293 , Humanos , Imunossupressores/farmacologia , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia
11.
Biol Psychiatry ; 90(1): 35-46, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33867114

RESUMO

BACKGROUND: Somatic mutations arising from the brain have recently emerged as significant contributors to neurodevelopmental disorders, including childhood intractable epilepsy and cortical malformations. However, whether brain somatic mutations are implicated in schizophrenia (SCZ) is not well established. METHODS: We performed deep whole exome sequencing (average read depth > 550×) of matched dorsolateral prefrontal cortex and peripheral tissues from 27 patients with SCZ and 31 age-matched control individuals, followed by comprehensive and strict analysis of somatic mutations, including mutagenesis signature, substitution patterns, and involved pathways. In particular, we explored the impact of deleterious mutations in GRIN2B through primary neural culture. RESULTS: We identified an average of 4.9 and 5.6 somatic mutations per exome per brain in patients with SCZ and control individuals, respectively. These mutations presented with average variant allele frequencies of 8.0% in patients with SCZ and 7.6% in control individuals. Although mutational profiles, such as the number and type of mutations, showed no significant difference between patients with SCZ and control individuals, somatic mutations in SCZ brains were significantly enriched for SCZ-related pathways, including dopamine receptor, glutamate receptor, and long-term potentiation pathways. Furthermore, we showed that brain somatic mutations in GRIN2B (encoding glutamate ionotropic NMDA receptor subunit 2B), which were found in two patients with SCZ, disrupted the location of GRIN2B across the surface of dendrites among primary cultured neurons. CONCLUSIONS: Taken together, this study shows that brain somatic mutations are associated with the pathogenesis of SCZ.


Assuntos
Mutação , Esquizofrenia , Encéfalo , Exoma/genética , Humanos , Córtex Pré-Frontal , Esquizofrenia/genética
12.
Schizophr Bull ; 47(1): 31-43, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32621612

RESUMO

Altered prepulse inhibition (PPI) is an endophenotype associated with multiple brain disorders, including schizophrenia. Circuit mechanisms that regulate PPI have been suggested, but none has been demonstrated through direct manipulations. IRSp53 is an abundant excitatory postsynaptic scaffold implicated in schizophrenia, autism spectrum disorders, and attention-deficit/hyperactivity disorder. We found that mice lacking IRSp53 in cortical excitatory neurons display decreased PPI. IRSp53-mutant layer 6 cortical neurons in the anterior cingulate cortex (ACC) displayed decreased excitatory synaptic input but markedly increased neuronal excitability, which was associated with excessive excitatory synaptic input in downstream mediodorsal thalamic (MDT) neurons. Importantly, chemogenetic inhibition of mutant neurons projecting to MDT normalized the decreased PPI and increased excitatory synaptic input onto MDT neurons. In addition, chemogenetic activation of MDT-projecting layer 6 neurons in the ACC decreased PPI in wild-type mice. These results suggest that the hyperactive ACC-MDT pathway suppresses PPI in wild-type and IRSp53-mutant mice.


Assuntos
Giro do Cíngulo/fisiopatologia , Núcleo Mediodorsal do Tálamo/fisiopatologia , Neurônios/fisiologia , Inibição Pré-Pulso/fisiologia , Esquizofrenia/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Vias Neurais/fisiopatologia
13.
PLoS Biol ; 18(4): e3000717, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32353004

RESUMO

Extensive evidence links Glutamate receptor, ionotropic, NMDA2B (GRIN2B), encoding the GluN2B/NR2B subunit of N-methyl-D-aspartate receptors (NMDARs), with various neurodevelopmental disorders, including autism spectrum disorders (ASDs), but the underlying mechanisms remain unclear. In addition, it remains unknown whether mutations in GluN2B, which starts to be expressed early in development, induces early pathophysiology that can be corrected by early treatments for long-lasting effects. We generated and characterized Grin2b-mutant mice that carry a heterozygous, ASD-risk C456Y mutation (Grin2b+/C456Y). In Grin2b+/C456Y mice, GluN2B protein levels were strongly reduced in association with decreased hippocampal NMDAR currents and NMDAR-dependent long-term depression (LTD) but unaltered long-term potentiation, indicative of mutation-induced protein degradation and LTD sensitivity. Behaviorally, Grin2b+/C456Y mice showed normal social interaction but exhibited abnormal anxiolytic-like behavior. Importantly, early, but not late, treatment of young Grin2b+/C456Y mice with the NMDAR agonist D-cycloserine rescued NMDAR currents and LTD in juvenile mice and improved anxiolytic-like behavior in adult mice. Therefore, GluN2B-C456Y haploinsufficiency decreases GluN2B protein levels, NMDAR-dependent LTD, and anxiety-like behavior, and early activation of NMDAR function has long-lasting effects on adult mouse behavior.


Assuntos
Ansiedade/genética , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Animais , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Ciclosserina/farmacologia , Potenciais Pós-Sinápticos Excitadores/genética , Técnicas de Introdução de Genes , Haploinsuficiência/genética , Heterozigoto , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos Mutantes , Mutação , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo
14.
Elife ; 92020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142410

RESUMO

Synaptic adhesion molecules regulate synapse development and function. However, whether and how presynaptic adhesion molecules regulate postsynaptic NMDAR function remains largely unclear. Presynaptic LAR family receptor tyrosine phosphatases (LAR-RPTPs) regulate synapse development through mechanisms that include trans-synaptic adhesion; however, whether they regulate postsynaptic receptor functions remains unknown. Here we report that presynaptic PTPσ, a LAR-RPTP, enhances postsynaptic NMDA receptor (NMDAR) currents and NMDAR-dependent synaptic plasticity in the hippocampus. This regulation does not involve trans-synaptic adhesions of PTPσ, suggesting that the cytoplasmic domains of PTPσ, known to have tyrosine phosphatase activity and mediate protein-protein interactions, are important. In line with this, phosphotyrosine levels of presynaptic proteins, including neurexin-1, are strongly increased in PTPσ-mutant mice. Behaviorally, PTPσ-dependent NMDAR regulation is important for social and reward-related novelty recognition. These results suggest that presynaptic PTPσ regulates postsynaptic NMDAR function through trans-synaptic and direct adhesion-independent mechanisms and novelty recognition in social and reward contexts.


Assuntos
Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Animais , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Transgênicos , Neuroimagem , Teste de Campo Aberto , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Receptores de N-Metil-D-Aspartato/genética , Transmissão Sináptica/fisiologia
15.
Front Cell Neurosci ; 14: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116566

RESUMO

IRSp53 (also known as BAIAP2) is an abundant excitatory postsynaptic scaffolding protein implicated in autism spectrum disorders (ASD), schizophrenia, and attention-deficit/hyperactivity disorder (ADHD). IRSp53 is expressed in different cell types across different brain regions, although it remains unclear how IRSp53 deletion in different cell types affects brain functions and behaviors in mice. Here, we deleted IRSp53 in excitatory and inhibitory neurons in mice and compared resulting phenotypes in males and females. IRSp53 deletion in excitatory neurons driven by Emx1 leads to strong social deficits and hyperactivity without affecting anxiety-like behavior, whereas IRSp53 deletion in inhibitory neurons driven by Viaat has minimal impacts on these behaviors in male mice. In female mice, excitatory neuronal IRSp53 deletion induces hyperactivity but moderate social deficits. Excitatory neuronal IRSp53 deletion in male mice induces an increased ratio of evoked excitatory and inhibitory synaptic transmission (E/I ratio) in layer V pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC), whereas the same mutation does not alter the E/I ratio in female neurons. These results suggest that IRSp53 deletion in excitatory and inhibitory neurons and in male and female mice has distinct impacts on behaviors and synaptic transmission.

16.
Front Mol Neurosci ; 12: 241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680851

RESUMO

Mutations in Tbr1, a high-confidence ASD (autism spectrum disorder)-risk gene encoding the transcriptional regulator TBR1, have been shown to induce diverse ASD-related molecular, synaptic, neuronal, and behavioral dysfunctions in mice. However, whether Tbr1 mutations derived from autistic individuals cause similar dysfunctions in mice remains unclear. Here we generated and characterized mice carrying the TBR1-K228E de novo mutation identified in human ASD and identified various ASD-related phenotypes. In heterozygous mice carrying this mutation (Tbr1 +/K228E mice), levels of the TBR1-K228E protein, which is unable to bind target DNA, were strongly increased. RNA-Seq analysis of the Tbr1 +/K228E embryonic brain indicated significant changes in the expression of genes associated with neurons, astrocytes, ribosomes, neuronal synapses, and ASD risk. The Tbr1 +/K228E neocortex also displayed an abnormal distribution of parvalbumin-positive interneurons, with a lower density in superficial layers but a higher density in deep layers. These changes were associated with an increase in inhibitory synaptic transmission in layer 6 pyramidal neurons that was resistant to compensation by network activity. Behaviorally, Tbr1 +/K228E mice showed decreased social interaction, increased self-grooming, and modestly increased anxiety-like behaviors. These results suggest that the human heterozygous TBR1-K228E mutation induces ASD-related transcriptomic, protein, neuronal, synaptic, and behavioral dysfunctions in mice.

17.
PLoS Biol ; 17(6): e2005326, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31166939

RESUMO

Netrin-G ligand-3 (NGL-3) is a postsynaptic adhesion molecule known to directly interact with the excitatory postsynaptic scaffolding protein postsynaptic density-95 (PSD-95) and trans-synaptically with leukocyte common antigen-related (LAR) family receptor tyrosine phosphatases to regulate presynaptic differentiation. Although NGL-3 has been implicated in the regulation of excitatory synapse development by in vitro studies, whether it regulates synapse development or function, or any other features of brain development and function, is not known. Here, we report that mice lacking NGL-3 (Ngl3-/- mice) show markedly suppressed normal brain development and postnatal survival and growth. A change of the genetic background of mice from pure to hybrid minimized these developmental effects but modestly suppressed N-methyl-D-aspartate (NMDA) receptor (NMDAR)-mediated synaptic transmission in the hippocampus without affecting synapse development, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR)-mediated basal transmission, and presynaptic release. Intriguingly, long-term depression (LTD) was near-completely abolished in Ngl3-/- mice, and the Akt/glycogen synthase kinase 3ß (GSK3ß) signaling pathway, known to suppress LTD, was abnormally enhanced. In addition, pharmacological inhibition of Akt, but not activation of NMDARs, normalized the suppressed LTD in Ngl3-/- mice, suggesting that Akt hyperactivity suppresses LTD. Ngl3-/- mice displayed several behavioral abnormalities, including hyperactivity, anxiolytic-like behavior, impaired spatial memory, and enhanced seizure susceptibility. Among them, the hyperactivity was rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-3 regulates brain development, Akt/GSK3ß signaling, LTD, and locomotive and cognitive behaviors.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Proteínas Ligadas por GPI/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Encéfalo/metabolismo , Proteínas Ligadas por GPI/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Ligantes , Depressão Sináptica de Longo Prazo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Netrinas/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica
18.
Front Mol Neurosci ; 12: 145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249508

RESUMO

Nav1.2, a voltage-gated sodium channel subunit encoded by the Scn2a gene, has been implicated in various brain disorders, including epilepsy, autism spectrum disorder, intellectual disability, and schizophrenia. Nav1.2 is known to regulate the generation of action potentials in the axon initial segment and their propagation along axonal pathways. Nav1.2 also regulates synaptic integration and plasticity by promoting back-propagation of action potentials to dendrites, but whether Nav1.2 deletion in mice affects neuronal excitability, synaptic transmission, synaptic plasticity, and/or disease-related animal behaviors remains largely unclear. Here, we report that mice heterozygous for the Scn2a gene (Scn2a +/- mice) show decreased neuronal excitability and suppressed excitatory synaptic transmission in the presence of network activity in the hippocampus. In addition, Scn2a +/- mice show suppressed hippocampal long-term potentiation (LTP) in association with impaired spatial learning and memory, but show largely normal locomotor activity, anxiety-like behavior, social interaction, repetitive behavior, and whole-brain excitation. These results suggest that Nav1.2 regulates hippocampal neuronal excitability, excitatory synaptic drive, LTP, and spatial learning and memory in mice.

19.
Cell Rep ; 23(13): 3839-3851, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949768

RESUMO

Netrin-G ligand 2 (NGL-2)/LRRC4, implicated in autism spectrum disorders and schizophrenia, is a leucine-rich repeat-containing postsynaptic adhesion molecule that interacts intracellularly with the excitatory postsynaptic scaffolding protein PSD-95 and trans-synaptically with the presynaptic adhesion molecule netrin-G2. Functionally, NGL-2 regulates excitatory synapse development and synaptic transmission. However, whether it regulates synaptic plasticity and disease-related specific behaviors is not known. Here, we report that mice lacking NGL-2 (Lrrc4-/- mice) show suppressed N-Methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity in the hippocampus. NGL-2 associates with NMDARs through both PSD-95-dependent and -independent mechanisms. Moreover, Lrrc4-/- mice display mild social interaction deficits and repetitive behaviors that are rapidly improved by pharmacological NMDAR activation. These results suggest that NGL-2 promotes synaptic stabilization of NMDARs, regulates NMDAR-dependent synaptic plasticity, and prevents autistic-like behaviors from developing in mice, supporting the hypothesis that NMDAR dysfunction contributes to autism spectrum disorders.


Assuntos
Transtorno Autístico/patologia , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno Autístico/metabolismo , Ciclosserina/farmacologia , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/metabolismo , Complexo de Golgi/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Plasticidade Neuronal/efeitos dos fármacos , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Aprendizagem Espacial , Sinapses/metabolismo , Transmissão Sináptica/efeitos dos fármacos
20.
J Neurosci ; 38(26): 5872-5887, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29798891

RESUMO

SALM1 (SALM (synaptic adhesion-like molecule), also known as LRFN2 (leucine rich repeat and fibronectin type III domain containing), is a postsynaptic density (PSD)-95-interacting synaptic adhesion molecule implicated in the regulation of NMDA receptor (NMDAR) clustering largely based on in vitro data, although its in vivo functions remain unclear. Here, we found that mice lacking SALM1/LRFN2 (Lrfn2-/- mice) show a normal density of excitatory synapses but altered excitatory synaptic function, including enhanced NMDAR-dependent synaptic transmission but suppressed NMDAR-dependent synaptic plasticity in the hippocampal CA1 region. Unexpectedly, SALM1 expression was detected in both glutamatergic and GABAergic neurons and Lrfn2-/- CA1 pyramidal neurons showed decreases in the density of inhibitory synapses and the frequency of spontaneous inhibitory synaptic transmission. Behaviorally, ultrasonic vocalization was suppressed in Lrfn2-/- pups separated from their mothers and acoustic startle was enhanced, but locomotion, anxiety-like behavior, social interaction, repetitive behaviors, and learning and memory were largely normal in adult male Lrfn2-/- mice. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, and social communication and startle behaviors in mice.SIGNIFICANCE STATEMENT Synaptic adhesion molecules regulate synapse development and function, which govern neural circuit and brain functions. The SALM/LRFN (synaptic adhesion-like molecule/leucine rich repeat and fibronectin type III domain containing) family of synaptic adhesion proteins consists of five known members for which the in vivo functions are largely unknown. Here, we characterized mice lacking SALM1/LRFN2 (SALM1 KO) known to associate with NMDA receptors (NMDARs) and found that these mice showed altered NMDAR-dependent synaptic transmission and plasticity, as expected, but unexpectedly also exhibited suppressed inhibitory synapse development and synaptic transmission. Behaviorally, SALM1 KO pups showed suppressed ultrasonic vocalization upon separation from their mothers and SALM1 KO adults showed enhanced responses to loud acoustic stimuli. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, social communication, and acoustic startle behavior.


Assuntos
Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Reflexo de Sobressalto/fisiologia , Vocalização Animal/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comportamento Social , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA