Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
J Anim Sci Technol ; 66(5): 962-980, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39398308

RESUMO

Antimicrobial resistance poses challenges to humans and animals, especially to the poultry sector in control of fowl typhoid with antibiotics, leading to increased mortality and food insecurity. Therefore, it is essential to develop more effective medications as alternatives to antibiotics. Currently, zinc oxide and copper oxide nanoparticles are of such significant interest due to their antibacterial properties. This study aimed to evaluate antimicrobial activity of zinc oxide and copper oxide nanoparticles against fowl typhoid in broilers. Ninety broiler chicks were raised under suitable management conditions. On day 10 of age, chicks were divided into six groups: control negative, control positive, T1, T2, T3, and T4. On day 19 of age, chicks in all groups except control negative were infected with Salmonella gallinarum (0.2 mL, 108 CFU/mL). After appearance of clinical signs, the treatments (Florfenicol; 50 mg/L drinking water [T1], and zinc oxide + copper oxide nanoparticles; 25 + 10 mg/kg/d [T2], 37.5 + 15 mg/kg/d [T3], and 50 + 20 mg/kg/d [T4]) were administered to chicks. Chicks were sacrificed on 26th and 30th day of age, and samples of blood and tissue were obtained. Hematological analysis with gross and histopathological examination of spleen, thymus and bursa of Fabricius was performed. Results revealed that there was no visible congestion in spleen and thymus of T3 and T4 at 11th day post infection. Antibody level against new castle's disease and lymphoproliferative response showed no significant difference in all groups. However, phagocytic response in nanoparticles treated groups exhibited a notable (p < 0.01) distinction compared to control positive. Notably, T3 demonstrated the highest level of phagocytic activity. Hematological parameters, including lymphocytes, heterophils, eosinophils, and heterophils/lymphocytes ratio in groups T2, T3, and T4, indicated significant (p < 0.01) difference compared to control positive. However, lymphocytes, heterophils, and heterophils/lymphocytes ratio in groups T2, T3, and T4 showed no significant difference when compared to T1. Nanoparticle treated groups showed decreased (p < 0.01) congestion of spleen and thymus as compared to control positive. Overall, zinc oxide and copper oxide nanoparticles have potential to serve as an alternative to florfenicol in treatment of fowl typhoid.

2.
Pharmaceuticals (Basel) ; 17(10)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39458918

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) is an aggressive cancer with limited treatment options. Parishin A, a natural compound derived from Gastrodia elata, possesses multiple therapeutic properties. However, its effects on OSCC remain unexplored. PURPOSE: This study explores the anti-cancer potential of Parishin A on OSCC and its mechanisms. METHODS: OSCC cell lines YD-10B and Ca9-22 were treated with varying Parishin A concentrations. Cell viability was detected using the CCK-8 assay, and colony formation was evaluated in agarose gel. Migration and invasion ability were assessed through wound healing and Matrigel invasion assays. The protein expression levels involved in the PI3K/AKT/mTOR signaling pathway and epithelial-mesenchymal transition (EMT) markers were examined via Western blotting. RESULTS: Parishin A inhibited OSCC cell viability in both dose- and time-dependent manners, with significant reductions at 20, 40, 60, and 80 µM, without affecting normal human gingival fibroblasts. Colony formation decreased substantially at ≥40 µM higher Parishin A concentrations in a dose-dependent manner. Also, migration and invasion assays showed significant suppression by Parishin A treatment concentration ≥40 µM in a dose-dependent manner, as evidenced by decreased wound closure and invasion. Western blot analyses revealed increased E-cadherin levels and decreased N-cadherin and vimentin levels, suggesting EMT inhibition. Parishin A also decreased the phosphorylation levels of PI3K, AKT, and mTOR. CONCLUSION: Collectively, these findings support the potential of Parishin A as an anti-OSCC agent.

3.
BMB Rep ; 57(9): 417-423, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39219045

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP), a 42-aminoacid hormone, exerts multifaceted effects in physiology, most notably in metabolism, obesity, and inflammation. Its significance extends to neuroprotection, promoting neuronal proliferation, maintaining physiological homeostasis, and inhibiting cell death, all of which play a crucial role in the context of neurodegenerative diseases. Through intricate signaling pathways involving its cognate receptor (GIPR), a member of the G protein-coupled receptors, GIP maintains cellular homeostasis and regulates a defense system against ferroptosis, an essential process in aging. Our study, utilizing GIP-overexpressing mice and in vitro cell model, elucidates the pivotal role of GIP in preserving neuronal integrity and combating age-related damage, primarily through the Epac/Rap1 pathway. These findings shed light on the potential of GIP as a therapeutic target for the pathogenesis of ferroptosis in neurodegenerative diseases and aging. [BMB Reports 2024; 57(9): 417-423].


Assuntos
Envelhecimento , Ferroptose , Polipeptídeo Inibidor Gástrico , Transdução de Sinais , Animais , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Transdução de Sinais/efeitos dos fármacos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/efeitos dos fármacos , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Receptores dos Hormônios Gastrointestinais/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Camundongos Endogâmicos C57BL
4.
Heliyon ; 10(17): e36976, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39286149

RESUMO

Nitric Oxide (NO) regulates important physiological functions. Garlic (Allium sativum) is an important food component consumed fresh and processed for thousands of years. It has high L-arginine, which contributes to the NO system in the body. Both garlic and NO impact important physiological processes. Here we produced brown garlic, with significantly higher nutritional and therapeutic value compared to fresh and black garlic. Lower exhaled NO was recorded in asthmatic mice fed with brown garlic but with higher blood SNOs and no change in eNOS and iNOS expression. Lung biopsy showed reduced eosinophil accumulation in asthmatic mice fed with brown garlic. Real-time PCR and Western blot analyses indicated high expression of antioxidant genes but reduced interleukin genes, IL-4, IL-5, IL-6, IL-13, IL1ß, and TNF-α brown garlic-fed asthmatic mice as compared to that in fresh and black garlic-fed asthmatic mice. This study provides the first comprehensive and conclusive insight into the nutritional benefits of brown garlic and its therapeutic value for the treatment of asthma in animals.

5.
In Vivo ; 38(5): 2318-2327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39187315

RESUMO

BACKGROUND/AIM: Skin wound healing is a physiological process restoring the structural and functional integrity of injured skin. During this process, wound management preventing bacterial infection and complications is important for the regeneration of skin layers and adnexa, as well as the protective function of the skin. Therefore, the development of an effective ointment to promote wound healing without complications is beneficial. MATERIALS AND METHODS: This study developed Raepenol™ cream, comprising a base cream and natural compounds including paeonol, D-panthenol and extract of Centella asiatica, and assessed its therapeutic effect in wound healing. A rat model of skin wound healing and a mouse model of imiquimod-induced pruritus were employed. The effect of Raepenol™ cream was evaluated by wound size and histological analysis, including the integrity of skin structures and inflammatory response. RESULTS: Raepenol™ cream treatment effectively restored the structural integrity of the skin in rats, including wound closure, regeneration of skin adnexa, and reconstitution of collagen, comparable to commercial ointment. Additionally, Raepenol™ cream significantly suppressed pruritus by inhibiting mast cell infiltration or retention in the inflammatory site of mouse ears. CONCLUSION: Raepenol™ cream effectively promoted wound healing and relieved pruritus in animal models. These results suggest that it could be a promising option for wound care and pruritus relief, offering potential advantages over current ointments.


Assuntos
Modelos Animais de Doenças , Prurido , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Ratos , Prurido/tratamento farmacológico , Masculino , Pele/efeitos dos fármacos , Pele/patologia , Pele/lesões , Pomadas , Creme para a Pele , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
6.
In Vivo ; 38(5): 2310-2317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39187319

RESUMO

BACKGROUND/AIM: Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses and a multifactorial etiology. While imatinib has demonstrated efficacy in the treatment of immune-related diseases, its potential effects in IBD treatment remain underexplored. MATERIALS AND METHODS: This study aimed to investigate the therapeutic effects of imatinib in colitis treatment. A dextran sulfate sodium (DSS)-induced colitis model was used to mimic IBD in mice. Imatinib was administered orally to mice simultaneously with DSS treatment. The effects of imatinib on DSS-induced colitis were evaluated by analyzing colitis-related pathology, including the disease activity index (DAI), histological lesions, inflammatory markers, and tight junction integrity. Additionally, western blot analysis and quantitative real-time polymerase chain reaction were used to assess inflammatory markers, tight-junction proteins, and cell death. RESULTS: In the DSS-induced colitis model, imatinib treatment exerted protective effects by attenuating weight loss, restoring colon length, reducing spleen weight, and improving the DAI score and histological lesions. Additionally, imatinib reduced the level of proinflammatory cytokines, including TNF-α, IL-6, and IL-1ß. Furthermore, imatinib treatment restored tight-junction integrity and decreased the expression of apoptosis marker proteins. CONCLUSION: Overall, imatinib treatment significantly alleviated the symptoms of DSS-induced colitis by influencing the expression of proinflammatory cytokines, tight junction proteins, and apoptotic markers in mice. These findings highlight imatinib as a potential therapeutic candidate for IBD.


Assuntos
Apoptose , Colite , Citocinas , Sulfato de Dextrana , Modelos Animais de Doenças , Mesilato de Imatinib , Animais , Mesilato de Imatinib/farmacologia , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Mediadores da Inflamação/metabolismo , Biomarcadores
7.
In Vivo ; 38(5): 2179-2189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39187362

RESUMO

BACKGROUND/AIM: Silibinin, has been investigated for its potential benefits and mechanisms in addressing vanadium pentoxide (V2O5)-induced pulmonary inflammation. This study explored the anti-inflammatory activity of silibinin and elucidate the mechanisms by which it operates in a mouse model of vanadium-induced lung injury. MATERIALS AND METHODS: Eight-week-old male BALB/c mice were exposed to V2O5 to induce lung injury. Mice were pretreated with silibinin at doses of 50 mg/kg and 100 mg/kg. Histological analyses were performed to assess cell viability and infiltration of inflammatory cells. The expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) and activation of the MAPK and NF-[Formula: see text]B signaling pathways, as well as the NLRP3 inflammasome, were evaluated using real-time PCR, western blot analysis, and immunohistochemistry. Whole blood analysis was conducted to measure white blood cell counts. RESULTS: Silibinin treatment significantly improved cell viability, reduced inflammatory cell infiltration, and decreased the expression of pro-inflammatory cytokines in V2O5-induced lung injury. It also notably suppressed the activation of the MAPK and NF-[Formula: see text]B signaling pathways, along with a marked reduction in NLRP3 inflammasome expression levels in lung tissues. Additionally, silibinin-treated groups exhibited a significant decrease in white blood cell counts, including neutrophils, lymphocytes, and eosinophils. CONCLUSION: These findings underscore the potent anti-inflammatory effects of silibinin in mice with V2O5-induced lung inflammation, highlighting its therapeutic potential. The study not only confirms the efficacy of silibinin in mitigating inflammatory responses but also provides a foundational understanding of its role in modulating key inflammatory pathways, paving the way for future therapeutic strategies against pulmonary inflammation induced by environmental pollutants.


Assuntos
Citocinas , Lesão Pulmonar , NF-kappa B , Transdução de Sinais , Silibina , Receptor 4 Toll-Like , Animais , Silibina/farmacologia , Camundongos , NF-kappa B/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/etiologia , Citocinas/metabolismo , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , Vanádio/farmacologia , Camundongos Endogâmicos BALB C , Anti-Inflamatórios/farmacologia , Silimarina/farmacologia , Mediadores da Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo
8.
J Periodontol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031888

RESUMO

BACKGROUND: Bacterial-induced inflammation instigates the destruction of hard and soft tissues surrounding teeth in periodontitis. In severe cases, the increased number and activity of osteoclasts induces the resorption of alveolar bones, ultimately leading to tooth loss. Because of their diverse chemical structures and bioactivities, natural compounds are often suggested to treat a wide variety of diseases, including inflammatory disorders. METHODS: In the present study, we demonstrated an inhibitory effect of gossypetin, a hexahydroxy flavone, on osteoclast differentiation and bone resorption using in vitro culture of osteoclasts from mouse bone marrow macrophage (BMM) precursors and in vivo model of ligature-induced periodontitis in mice. RESULTS: Gossypetin significantly reduced the differentiation of osteoclasts from mouse BMM precursors in the presence of the receptor activator of nuclear factor κB ligand (RANKL). In vitro, gossypetin inhibited critical signaling events downstream of RANKL including the auto-amplification of nuclear factor of activated T-cells, cytoplasmic 1, Ca2+ oscillations, and the generation of reactive oxygen species. In a mouse ligature-induced periodontitis model, the administration of gossypetin significantly reduced osteoclastogenesis and alveolar bone resorption. Furthermore, gossypetin prevented the ligature-induced increase in macrophages and T cells and reduced the production of tumor necrosis factor-α and interleukin-6. CONCLUSION: Taken together, these results show anti-osteoclastogenic and anti-inflammatory effects of gossypetin, suggesting the potential use of this natural compound in periodontitis.

9.
Toxics ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39058139

RESUMO

Antimicrobial peptides (AMPs) function to extensively suppress various problematic factors and are considered a new alternative for improving livestock health and enhancing immunomodulation. In this study, we explored whether AMP regulation has positive influences on Ochratoxin A (OTA) exposure using a porcine intestinal epithelial cell line (IPEC-J2 cells). We constructed a beta-defensin 1 (DEFB1) expression vector and used it to transfection IPEC-J2 cells to construct AMP overexpression cell lines. The results showed that OTA induced cytotoxicity, decreased cell migration, and increased inflammatory markers mRNA in IPEC-J2 cells. In DEFB1 overexpressing cell lines, OTA-induced reduced cell migration and increased inflammatory markers mRNA were alleviated. Additionally, a natural product capable of inducing DEFB1 expression, which was selected through high-throughput screening, showed significant alleviation of cytotoxicity, cell migration, and inflammatory markers compared to OTA-treated IPEC-J2 cells. Our finding provides novel insights and clues for the porcine industry, which is affected by OTA exposure.

10.
J Anim Sci Biotechnol ; 15(1): 80, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845033

RESUMO

BACKGROUND: The intestinal epithelium performs essential physiological functions, such as nutrient absorption, and acts as a barrier to prevent the entry of harmful substances. Mycotoxins are prevalent contaminants found in animal feed that exert harmful effects on the health of livestock. Zearalenone (ZEA) is produced by the Fusarium genus and induces gastrointestinal dysfunction and disrupts the health and immune system of animals. Here, we evaluated the molecular mechanisms that regulate the effects of ZEA on the porcine intestinal epithelium. RESULTS: Treatment of IPEC-J2 cells with ZEA decreased the expression of E-cadherin and increased the expression of Snai1 and Vimentin, which induced Snail1-mediated epithelial-to-mesenchymal transition (EMT). In addition, ZEA induces Snail-mediated EMT through the activation of TGF-ß signaling. The treatment of IPEC-J2 cells with atractylenolide III, which were exposed to ZEA, alleviated EMT. CONCLUSIONS: Our findings provide insights into the molecular mechanisms of ZEA toxicity in porcine intestinal epithelial cells and ways to mitigate it.

11.
Sci Rep ; 14(1): 10978, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744928

RESUMO

Maintaining epidermal homeostasis relies on a tightly organized process of proliferation and differentiation of keratinocytes. While past studies have primarily focused on calcium regulation in keratinocyte differentiation, recent research has shed light on the crucial role of lysosome dysfunction in this process. TLR adaptor interacting with SLC15A4 on the lysosome (TASL) plays a role in regulating pH within the endo-lysosome. However, the specific role of TASL in keratinocyte differentiation and its potential impact on proliferation remains elusive. In our study, we discovered that TASL deficiency hinders the proliferation and migration of keratinocytes by inducing G1/S cell cycle arrest. Also, TASL deficiency disrupts proper differentiation process in TASL knockout human keratinocyte cell line (HaCaT) by affecting lysosomal function. Additionally, our research into calcium-induced differentiation showed that TASL deficiency affects calcium modulation, which is essential for keratinocyte regulation. These findings unveil a novel role of TASL in the proliferation and differentiation of keratinocytes, providing new insights into the intricate regulatory mechanisms of keratinocyte biology.


Assuntos
Cálcio , Diferenciação Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular , Queratinócitos , Lisossomos , Humanos , Cálcio/metabolismo , Linhagem Celular , Movimento Celular , Queratinócitos/metabolismo , Queratinócitos/citologia , Lisossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
12.
J Periodontal Res ; 59(4): 698-711, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38699841

RESUMO

OBJECTIVE AND BACKGROUND: This research aimed to examine the role of C-X-C motif chemokine ligand 5 (CXCL5) and C-X-C motif chemokine ligand 8 (CXCL8; also known as IL-8) in neutrophilic inflammation triggered by peri-implantitis and to shed light on the underlying mechanisms that link them to the development of this condition. MATERIALS: This study included 40 patients who visited the Department of Periodontology at Kyungpook University Dental Hospital. They were divided into two groups based on their condition: healthy implant (HI) group (n = 20) and peri-implantitis (PI) group (n = 20). Biopsy samples of PI tissue were collected from the patients under local anesthesia. HI tissue was obtained using the same method during the second implant surgery. To construct libraries for control and test RNAs, the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria) was used according to the manufacturer's instructions. Samples were pooled based on representative cytokines obtained from RNA sequencing results and subjected to Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Hematoxylin and eosin staining, and immunohistochemistry (IHC) analysis were performed to visually assess expression levels and analyze tissue histology. Student's t-test was employed to conduct statistical analyses. RESULTS: Initially, heatmaps were used to examine gene expression variations between the HI and PI groups based on the results of RNA sequencing. Notably, among various cytokines, CXCL5 and CXCL8 had the highest expression levels in the PI group compared with the HI group, and they are known to be associated with inflammatory responses. In the gingival tissues, the expression of genes encoding cytokines such as interleukin (IL)-1ß, tumor necrosis factor-alpha (TNF)-α, interleukin (IL)-6, and CXCL5/CXCL8 was assessed via RT-qPCR. The mRNA expression level of CXCL5/CXCL8 significantly increased in the PI group compared with the HI group (p < .045). Contrarily, the mRNA expression level of interleukin 36 receptor antagonist (IL36RN) significantly decreased (p < .008). IHC enabled examination of the distribution and intensity of CXCL5/CXCL8 protein expression within the tissue samples. Specifically, increased levels of CXCL5/CXCL8 promote inflammatory responses, cellular proliferation, migration, and invasion within the peri-implant tissues. These effects are mediated through the activation of the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: This study found that the PI sites had higher gene expression level of CXCL8/CXCL5 in the soft tissue than HI sites, which could help achieve more accurate diagnosis and treatment planning.


Assuntos
Quimiocina CXCL5 , Interleucina-8 , Neutrófilos , Peri-Implantite , Humanos , Peri-Implantite/patologia , Peri-Implantite/imunologia , Peri-Implantite/metabolismo , Interleucina-8/análise , Masculino , Neutrófilos/patologia , Feminino , Pessoa de Meia-Idade , Inflamação , Adulto
13.
Sci Rep ; 14(1): 5908, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467701

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition that is influenced by various factors, including environmental factors, immune responses, and genetic elements. Among the factors that influence IBD progression, macrophages play a significant role in generating inflammatory mediators, and an increase in the number of activated macrophages contributes to cellular damage, thereby exacerbating the overall inflammatory conditions. HSPA9, a member of the heat shock protein 70 family, plays a crucial role in regulating mitochondrial processes and responding to oxidative stress. HSPA9 deficiency disrupts mitochondrial dynamics, increasing mitochondrial fission and the production of reactive oxygen species. Based on the known functions of HSPA9, we considered the possibility that HSPA9 reduction may contribute to the exacerbation of colitis and investigated its relevance. In a dextran sodium sulfate-induced colitis mouse model, the downregulated HSPA9 exacerbates colitis symptoms, including increased immune cell infiltration, elevated proinflammatory cytokines, decreased tight junctions, and altered macrophage polarization. Moreover, along with the increased mitochondrial fission, we found that the reduction in HSPA9 significantly affected the superoxide dismutase 1 levels and contributed to cellular death. These findings enhance our understanding of the intricate mechanisms underlying colitis and contribute to the development of novel therapeutic approaches for this challenging condition.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Morte Celular , Colite/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo
14.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256100

RESUMO

In this study, a novel film of poly(vinyl alcohol) (PVA)/pullulan (PULL) with improved surface characteristics was prepared from poly(vinyl acetate) (PVAc)/PULL blend films with various mass ratios after the saponification treatment in a heterogeneous medium. According to proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared, and X-ray diffraction results, it was established that the successful fabrication of saponified PVA/PULL (100/0, 90/10, and 80/20) films could be obtained from PVAc/PULL (100/0, 90/10, and 80/20) films, respectively, after 72 h saponification at 50 °C. The degree of saponification calculated from 1H-NMR analysis results showed that fully saponified PVA was obtained from all studied films. Improved hydrophilic characteristics of the saponified films were revealed by a water contact angle test. Moreover, the saponified films showed improved mechanical behavior, and the micrographs of saponified films showed higher surface roughness than the unsaponified films. This kind of saponified film can be widely used for biomedical applications. Moreover, the reported saponified film dressing extended the lifespan of dressing as determined by its self-healing capacity and considerably advanced in vivo wound-healing development, which was attributed to its multifunctional characteristics, meaning that saponified film dressings are promising candidates for full-thickness skin wound healing.


Assuntos
Etanol , Álcool de Polivinil , Glucanos , Bandagens , Poli A , Cloreto de Polivinila
15.
J Cancer ; 15(3): 659-670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213733

RESUMO

Oral squamous cell carcinoma (OSCC) is a prevalent oral and maxillofacial cancer with high mortality as OSCC cells readily invade tissues and metastasize to cervical lymph nodes. Although imatinib exhibits potential anticancer and remarkable clinical activities that therapeutically affect several cancer types, its specific impact on OSCC has yet to be fully explored. Therefore, this study investigated the potential anticancer effect of imatinib on OSCC cells and the underlying mechanisms. The Cell Counting Kit-8 was used to determine the impact of imatinib on cell viability. Then, morphological cell proliferation analysis was conducted to examine how imatinib impacted OSCC cell growth. Moreover, OSCC cell migration was determined through wound-healing assays, and colony formation abilities were investigated through the soft agar assay. Lastly, the effect of imatinib on OSCC cell apoptosis was verified with flow cytometry, and its inhibitory mechanism was confirmed through Western blot. Our results demonstrate that imatinib effectively inhibited OSCC cell proliferation and significantly curtailed OSCC cell viability in a time- and concentration-dependent manner. Furthermore, imatinib suppressed migration and colony formation while promoting OSCC cell apoptosis by enhancing p53, Bax, and PARP expression levels and reducing Bcl-2 expression. Imatinib also inhibited the PI3K/AKT/mTOR signaling pathway and induced OSCC cell apoptosis, demonstrating the potential of imatinib as a treatment for oral cancer.

16.
Reprod Toxicol ; 123: 108528, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145882

RESUMO

Perfluorooctanoic acid (PFOA) is a perfluorinated compound, a synthesized chemical, and has been used in several industrial products for more than 70 years. Although PFOA is known to exert toxic effects in normal cells, there is no detailed information on its reproductive toxicity and its effects on sperm functions related to protein kinase B (AKT). Therefore, this study was conducted to explore the effects of PFOA on sperm functions via AKT. Boar spermatozoa were incubated with different concentrations of PFOA (0, 0.1, 1, 10, and 100 µM) to induce capacitation. Sperm functions (sperm motility, motion kinematic parameters, capacitation status, cell viability, and intracellular ATP levels) were evaluated. In addition, the expression levels of AKT, phospho-AKT, phospho-PKA, and tyrosine phosphorylated proteins were evaluated by western blotting. Results showed significant decreases in sperm motility and motion kinematic parameters. PFOA treatment significant suppressed spermatozoa capacitation and intracellular ATP levels. Furthermore, it significantly decreased the levels of phospho-PKA and tyrosine phosphorylated proteins. The levels of AKT phosphorylation at Thr308 and Ser473 also significantly decreased. These findings suggest that PFOA diminishes sperm functions during capacitation and induces unnatural phosphorylation in AKT, leading to reproductive toxicity. Therefore, people should be aware of reproductive toxicity when using PFOA.


Assuntos
Caprilatos , Fluorocarbonos , Proteínas Proto-Oncogênicas c-akt , Sêmen , Animais , Masculino , Trifosfato de Adenosina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen/metabolismo , Capacitação Espermática , Motilidade dos Espermatozoides , Espermatozoides , Suínos , Tirosina/metabolismo
17.
J Appl Oral Sci ; 31: e20230243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37820185

RESUMO

OBJECTIVE: Gossypetin, isolated from Hibiscus sabdariffa L, has been shown to have various pharmacological effects including anti-inflammatory and antibacterial activity against various diseases. However, since the effect of gossypetin in oral cancer remains to be reported, we aimed to investigate the anticancer activity and mechanisms of gossypetin in oral squamous cell carcinoma (OSCC). METHODOLOGY: The proliferation of OSCC cells was evaluated by cell viability and soft agar colony assays. The effects of gossypetin on the migration and invasion of OSCC cells was investigated by wound healing and transwell invasion assays, respectively. Apoptosis and cell cycle arrest were measured by flow cytometry. Moreover, the anticancer mechanism of gossypetin in OSCC cells was analyzed by western blotting. RESULTS: Gossypetin inhibited the proliferation, migration, and invasion of OSCC cells and induced apoptosis by upregulating the Bax/Bcl-2 ratio and cell cycle arrest at the G2/M phase. Furthermore, gossypetin regulated the activation of extracellular signal-regulated kinase and nuclear factor-kappa B. CONCLUSION: Results showed that gossypetin inhibits the proliferation, migration, and invasion of OSCC cells and triggers apoptosis and cell cycle arrest in OSCC. Therefore, gossypetin has the potential for use as a chemopreventive agent in oral cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Hibiscus , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Bucais/patologia , Apoptose , Movimento Celular
18.
J Cancer ; 14(10): 1875-1887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476191

RESUMO

Background: Oral cancer is one of the most prevalent malignant tumors worldwide. Silibinin has been reported to exert therapeutic effects in various cancer models. However, its mechanism of action in oral cancer remains unclear. We aimed to examine the molecular processes underlying the effects of silibinin in oral cancer in vitro and in vivo as well as its potential anticancer effects. Next, we investigated the molecular processes underlying both in vitro and in vivo outcomes of silibinin treatment on oral cancer. Methods: To investigate the effects of silibinin on the growth of oral cancer cells, cell proliferation and anchorage-independent colony formation tests were conducted on YD10B and Ca9-22 oral cancer cells. The effects of silibinin on the migration and invasion of oral cancer cells were evaluated using transwell assays. Flow cytometry was used to examine apoptosis, cell cycle distribution, and accumulation of reactive oxygen species (ROS). The molecular mechanism underlying the anticancer effects of silibinin was explored using immunoblotting. The in vivo effects of silibinin were evaluated using a Ca9-22 xenograft mouse model. Results: Silibinin effectively suppressed YD10B and Ca9-22 cell proliferation and colony formation in a dose-dependent manner. Moreover, it induced cell cycle arrest in the G0/G1 phase, apoptosis, and ROS generation in these cells. Furthermore, silibinin inhibited the migration and invasion abilities of YD10B and Ca9-22 cells by regulating the expression of proteins involved in the epithelial-mesenchymal transition. Western blotting revealed that silibinin downregulated SOD1 and SOD2 and triggered the JNK/c-Jun pathway in oral cancer cells. Silibinin significantly inhibited xenograft tumor growth in nude mice, with no obvious toxicity. Conclusions: Silibinin considerably reduced the development of oral cancer cells by inducing apoptosis, G0/G1 arrest, ROS generation, and activation of the JNK/c-Jun pathway. Importantly, silibinin effectively suppressed xenograft tumor growth in nude mice. Our findings indicate that silibinin may be a promising option for the prevention or treatment of oral cancer.

19.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239855

RESUMO

Oral cancer remains the leading cause of death worldwide. Rhein is a natural compound extracted from the traditional Chinese herbal medicine rhubarb, which has demonstrated therapeutic effects in various cancers. However, the specific effects of rhein on oral cancer are still unclear. This study aimed to investigate the potential anticancer activity and underlying mechanisms of rhein in oral cancer cells. The antigrowth effect of rhein in oral cancer cells was estimated by cell proliferation, soft agar colony formation, migration, and invasion assay. The cell cycle and apoptosis were detected by flow cytometry. The underlying mechanism of rhein in oral cancer cells was explored by immunoblotting. The in vivo anticancer effect was evaluated by oral cancer xenografts. Rhein significantly inhibited oral cancer cell growth by inducing apoptosis and S-phase cell cycle arrest. Rhein inhibited oral cancer cell migration and invasion through the regulation of epithelial-mesenchymal transition-related proteins. Rhein induced reactive oxygen species (ROS) accumulation in oral cancer cells to inhibit the AKT/mTOR signaling pathway. Rhein exerted anticancer activity in vitro and in vivo by inducing oral cancer cell apoptosis and ROS via the AKT/mTOR signaling pathway in oral cancer. Rhein is a potential therapeutic drug for oral cancer treatment.


Assuntos
Neoplasias Bucais , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular Tumoral
20.
J. appl. oral sci ; J. appl. oral sci;31: e20230243, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1514406

RESUMO

Abstract Objective Gossypetin, isolated from Hibiscus sabdariffa L, has been shown to have various pharmacological effects including anti-inflammatory and antibacterial activity against various diseases. However, since the effect of gossypetin in oral cancer remains to be reported, we aimed to investigate the anticancer activity and mechanisms of gossypetin in oral squamous cell carcinoma (OSCC). Methodology The proliferation of OSCC cells was evaluated by cell viability and soft agar colony assays. The effects of gossypetin on the migration and invasion of OSCC cells was investigated by wound healing and transwell invasion assays, respectively. Apoptosis and cell cycle arrest were measured by flow cytometry. Moreover, the anticancer mechanism of gossypetin in OSCC cells was analyzed by western blotting. Results Gossypetin inhibited the proliferation, migration, and invasion of OSCC cells and induced apoptosis by upregulating the Bax/Bcl-2 ratio and cell cycle arrest at the G2/M phase. Furthermore, gossypetin regulated the activation of extracellular signal-regulated kinase and nuclear factor-kappa B. Conclusion Results showed that gossypetin inhibits the proliferation, migration, and invasion of OSCC cells and triggers apoptosis and cell cycle arrest in OSCC. Therefore, gossypetin has the potential for use as a chemopreventive agent in oral cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA