Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Genes Genomics ; 46(3): 367-378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095842

RESUMO

BACKGROUND: Secondary metabolites such as benzylisoquinoline alkaloids (BIA) have attracted considerable attention because of their pharmacological properties and potential therapeutic applications. Methyltransferases (MTs) can add methyl groups to alkaloid molecules, altering their physicochemical properties and bioactivity, stability, solubility, and recognition by other cellular components. Five types of O-methyltransferases and two types of N-methyltransferases are involved in BIA biosynthesis. OBJECTIVE: Since MTs may be the source for the discovery and development of novel biomedical, agricultural, and industrial compounds, we performed extensive molecular and phylogenetic analyses of O- and N-methyltransferases in BIA-producing plants. METHODS: MTs involved in BIA biosynthesis were isolated from transcriptomes of Berberis koreana and Caulophyllum robustum. We also mined the methyltransferases of Coptis japonica, Papaver somniferum, and Nelumbo nucifera from the National Center for Biotechnology Information protein database. Then, we analyzed the functional motifs and phylogenetic analysis. RESULT: We mined 42 O-methyltransferases and 8 N-methyltransferases from the five BIA-producing plants. Functional motifs for S-adenosyl-L-methionine-dependent methyltransferases were retained in most methyltransferases, except for the three O-methyltransferases from N. nucifera. Phylogenetic analysis revealed that the methyltransferases were grouped into four clades, I, II, III and IV. The clustering patterns in the phylogenetic analysis suggested a monophyletic origin of methyltransferases and gene duplication within species. The coexistence of different O-methyltransferases in the deep branch subclade might support some cases of substrate promiscuity. CONCLUSIONS: Methyltransferases may be a source for the discovery and development of novel biomedical, agricultural, and industrial compounds. Our results contribute to further understanding of their structure and reaction mechanisms, which will require future functional studies.


Assuntos
Alcaloides , Benzilisoquinolinas , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Alcaloides/metabolismo , Plantas/metabolismo
2.
ACS Appl Mater Interfaces ; 15(34): 40409-40418, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37586096

RESUMO

Si is known for cracking and delamination during electrochemical cycling of a battery due to the large volume change associated with Li insertion and extraction. However, it has been found experimentally that patterned Si island electrodes that are 200 nm thick and less than 7 µm wide can deform in a purely elastic manner. Inspired by this, we performed in situ Raman stress characterization of model poly-crystalline Si island electrodes using an electrochemical cell coupled with an immersion objective lens and designed for a short working distance. A 5 µm wide Si island electrode showed a parabolic stress profile during lithiation, while for a 15 µm Si island electrode, a stress plateau in the center of the electrode was observed. A continuum model with coupled electro-chemo-mechanical (ECM) physics was established to understand the stress measurement. A qualitative agreement was reached between modeling and experimental data, and the critical size effect could be explained by the Li diffusive flux as governed by competition between the Li concentration and hydrostatic stress gradients. Below the critical size, the stress gradient drives Li toward the edges, where the electrode volume is free to expand, while above the critical size, the stress plateau inhibits Li diffusion to the edge and forces destructive stress relief by cracking. This work represents a promising methodology for in situ characterization of ECM coupling in battery electrodes, with suggestions provided for further improvement.

3.
Plants (Basel) ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050109

RESUMO

Caulophyllum robustum, commonly named Asian blue cohosh, is a perennial herb in the family Berberidaceae. It has traditionally been used for folk medicine in China. We isolated berberine from the leaves, stem, roots, and fruits of C. robustum, and this is the first report on berberine in this species. Transcriptome analysis was conducted for the characterization of berberine biosynthesis genes in C. robustum, in which, all the genes for berberine biosynthesis were identified. From 40,094 transcripts, using gene ontology (GO) analysis, 26,750 transcripts were assigned their functions in the categories of biological process, molecular function, and cellular component. In the analysis of genes expressed in different tissues, the numbers of genes in the categories of intrinsic component of membrane and transferase activity were up-regulated in leaves versus stem. The berberine synthesis genes in C. robustum were characterized by phylogenetic analysis with corresponding genes from other berberine-producing species. The co-existence of genes from different plant families in the deepest branch subclade implies that the differentiation of berberine synthesis genes occurred early in the evolution of berberine-producing plants. Furthermore, the copy number increment of the berberine synthesis genes was detected at the species level.

4.
ACS Appl Mater Interfaces ; 15(8): 10752-10760, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795856

RESUMO

This work presents a stress characterization of crystalline Si electrodes using micro-Raman spectroscopy. First, the phase heterogeneity in the c-Si electrodes after initial lithiation was investigated by scanning electron microscopy (SEM) and other complementary techniques. A surprising three-phase layer structure, with a-LixSi (x = 2.5), c-LixSi (x = 0.3-2.5), and c-Si layers, was observed, and its origin was attributed to the electro-chemo-mechanical (ECM) coupling effect in the c-Si electrodes. Then, a Raman scan was performed to characterize stress distribution in lithiated c-Si electrodes. The results showed that the maximum tensile stress occurred at the interface between c-LixSi and c-Si layers, indicating a plastic flow behavior. The yield stress increased with total lithium charge, and the relationship showed consistency with a prior multibeam optical sensor (MOS) study. Lastly, stress distribution and structural integrity of the c-Si electrodes after initial delithiation and further cycling were studied, and a comprehensive picture of the failure mechanism of the c-Si electrode was obtained.

5.
Plants (Basel) ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297700

RESUMO

Berberine and berbamine are bioactive compounds of benzylisoquinoline alkaloids (BIAs) present in Berberis species. The contents of berbamine are 20 times higher than berberine in leaf tissues in three closely related species: Berberis koreana, B. thunbergii and B. amurensis. This is the first report on the quantification of berberine compared to the berbamine in the Berberis species. Comparative transcriptome analyses were carried out with mRNAs from the leaf tissues of the three-species. The comparison of the transcriptomes of B. thunbergii and B. amurensis to those of B. koreana, B. thunbergii showed a consistently higher number of differentially expressed genes than B. amurensis in KEGG and DEG analyses. All genes encoding enzymes involved in berberine synthesis were identified and their expressions were variable among the three species. There was a single copy of CYP80A/berbamunine synthase in B. koreana. Methyltransferases and cytochrome P450 mono-oxidases (CYPs) are key enzymes for BIA biosynthesis. The current report contains the copy numbers and other genomic characteristics of the methyltransferases and CYPs in Berberis species. Thus, the contents of the current research are valuable for molecular characterization for the medicinal utilization of the Berberis species.

6.
Genes Genomics ; 44(10): 1231-1242, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35951153

RESUMO

BACKGROUND: The family Columbidae is known as the pigeon family and contains approximately 351 species and 50 genera. Compared to the wealth of biological and genomic information on these Columba livia var. domesteca, information on Columba rupestris and Streptopelia orientalis has been rather limited. The C. rupestris population size is decreasing in Korea. OBJECTIVES: Whole-genome sequencing and identification of population characterization of each species based genome variation on 9 Korean pigeon and dove samples, namely, six hill pigeon (C. rupestris), one rock pigeon (C. livia var. domestica) and two oriental turtle dove (S. orientalis) samples. RESULTS: The whole genome of 9 genotypes were sequenced and mapped to the C. livia reference genome. Sequence alignment showed over 96% identity in C. rupestris and 94% identity in S. orientalis to the reference genome (GenBank assembly accession: GCA_001887795.1). Sequence variations, including single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and structural variations, revealed that intergenus (Columba vs. Streptopelia) variations were approximately four times higher than intragenus variations (C. livia vs. C. rupestris). Of the two Columba species, C. livia var. domestica is closer to S. orientalis than C. rupestris. Pairwise sequentially Markovian coalescent (PSMC) demographic history analysis revealed that the three species underwent a common population bottleneck between 105 and 120 Kya; since then, the effective population sizes of the rock pigeon and oriental turtle dove have increased. CONCLUSION: The effective population size of the hill pigeon, an Endangered Species of Grade II in Korea, has increased slowly from the second severe bottleneck that occurred approximately 0.5-1.4 × 104 years ago. Our results showed no relationship between copy number variation in the Norrie disease protein (NDP) regulatory regions and plumage color patterns. We report the first comparative analysis of three pigeon genomes.


Assuntos
Columbidae , Variações do Número de Cópias de DNA , Animais , Columbidae/genética , Demografia , Genoma/genética , Genótipo
7.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889464

RESUMO

The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E. maculata. Full-length cDNA sequencing was carried out to characterize the transcripts of terpenoid biosynthesis reference genes and determine the copy numbers of their isoforms using PacBio SMRT sequencing technology. The Illumina short-read sequencing platform was also employed to identify differentially expressed genes (DEGs) in the secondary metabolite pathways from leaves, roots, and stems. PacBio generated 62 million polymerase reads, resulting in 81,433 high-quality reads. From these high-quality reads, we reconstructed a genome of 20,722 genes, in which 20,246 genes (97.8%) did not have paralogs. About 33% of the identified genes had two or more isoforms. DEG analysis revealed that the expression level differed among gene paralogs in the leaf, stem, and root. Whole sets of paralogs and isoforms were identified in the mevalonic acid (MVA), methylerythritol phosphate (MEP), and terpenoid biosynthesis pathways in the E. maculata L. The nucleotide information will be useful for identifying orthologous genes in other terpenoid-producing medicinal plants.


Assuntos
Euphorbia , DNA Complementar/genética , Euphorbia/genética , Euphorbia/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Terpenos/metabolismo , Transcriptoma/genética
8.
Front Psychiatry ; 13: 801301, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686182

RESUMO

Background: Depression and suicide are critical social problems worldwide, but tools to objectively diagnose them are lacking. Therefore, this study aimed to diagnose depression through machine learning and determine whether it is possible to identify groups at high risk of suicide through words spoken by the participants in a semi-structured interview. Methods: A total of 83 healthy and 83 depressed patients were recruited. All participants were recorded during the Mini-International Neuropsychiatric Interview. Through the suicide risk assessment from the interview items, participants with depression were classified into high-suicide-risk (31 participants) and low-suicide-risk (52 participants) groups. The recording was transcribed into text after only the words uttered by the participant were extracted. In addition, all participants were evaluated for depression, anxiety, suicidal ideation, and impulsivity. The chi-square test and student's T-test were used to compare clinical variables, and the Naive Bayes classifier was used for the machine learning text model. Results: A total of 21,376 words were extracted from all participants and the model for diagnosing patients with depression based on this text confirmed an area under the curve (AUC) of 0.905, a sensitivity of 0.699, and a specificity of 0.964. In the model that distinguished the two groups using statistically significant demographic variables, the AUC was only 0.761. The DeLong test result (p-value 0.001) confirmed that the text-based classification was superior to the demographic model. When predicting the high-suicide-risk group, the demographics-based AUC was 0.499, while the text-based one was 0.632. However, the AUC of the ensemble model incorporating demographic variables was 0.800. Conclusion: The possibility of diagnosing depression using interview text was confirmed; regarding suicide risk, the diagnosis accuracy increased when demographic variables were incorporated. Therefore, participants' words during an interview show significant potential as an objective and diagnostic marker through machine learning.

9.
Life (Basel) ; 12(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35629340

RESUMO

Accumulating evidence suggests that the medial prefrontal cortex (mPFC) has been implicated in the acquisition of fear memory during trace fear conditioning in which a conditional stimulus (CS) is paired with an aversive unconditional stimulus (UCS) separated by a temporal gap (trace interval, TI). However, little is known about the role of the prefrontal cortex for short- and long-term trace fear memory formation. Thus, we investigated how the prelimbic (PL) subregion within mPFC in rats contributes to short- and long-term trace fear memory formation using electrolytic lesions and d,l,-2-amino-5-phosphonovaleric acid (APV), an N-methyl-D-aspartate receptor (NMDAR) antagonist infusions into PL. In experiment 1, pre-conditioning lesions of PL impaired freezing to the CS as well as TI during the acquisition and retrieval sessions, indicating that PL is critically involved in trace fear memory formation. In experiment 2, temporary blockade of NMDA receptors in PL impaired the acquisition, but not the expression of short- and long-term trace fear memory. In addition, the inactivation of NMDAR in PL had little effect on locomotor activity, pre-pulse inhibition (PPI), or shock sensitivity. Taken together, these results suggest that NMDA receptor-mediated neurotransmission in PL is required for the acquisition of trace fear memory.

10.
Genes Genomics ; 44(3): 247-249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35133624

RESUMO

For much of the twentieth century, it was accepted that genes dictate phenotypes. Nevertheless, genetics in combination with molecular biology and genomics has facilitated the explanation of some peculiar molecular phenomena. Most eukaryotic genomes are crammed with noncoding DNA, which was previously hypothesized to be selfish DNA, with only a small fraction of sequences encoding proteins. We now know that the genes are not blueprint for phenotypes. Typically, genes interact with the environment to form phenotypes. Epigenetic regulation modifies genes. Epigenetics is defined as a "stably heritable phenotype resulting from changes in chromosomes without alterations to DNA sequences". The theme of this special issue is "Genomic perspectives on epigenetics." Here, we review 12 articles that reflect considerable advancements in this rapidly evolving subject area.


Assuntos
Epigênese Genética , Genômica , Fenótipo
11.
Arch Environ Occup Health ; 77(3): 243-250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33468037

RESUMO

INTRODUCTION: We compared the cardiovascular age (an indicator of cardiovascular disease risk) in workers with different employment status after adjustment for demographic and socioeconomic factors. METHODS: This cross-sectional study used data collected from 2007 to 2017 for the Korea National Health and Nutrition Examination Survey (KNHANES). Study participants were placed into different employment categories based on employment status and work schedule: regular full-time, regular part-time, temporary full-time, temporary part-time, daily full-time, and daily part-time. RESULTS: Analysis of women indicated that regular part-time, temporary full-time, temporary part-time, daily full-time, and daily part-time workers were more likely to have an older cardiovascular age (OR = 1.180, 1.238, 1.297, 1.493, and 1.408, respectively) after adjustment for age, marriage, education, income, residence, region, and drinking status. Analysis of men indicated employment status was unrelated to cardiovascular age. CONCLUSION: Female nonstandard Korean workers were more likely to have an increased cardiovascular age. However, most of these workers, especially daily workers, are not currently protected by the Occupational Safety and Health Act (OSHA) of Korea. Collaboration or networking with community-based health care services in Korea is essential to better manage the health of these vulnerable female workers.


Assuntos
Emprego , Estudos Transversais , Feminino , Humanos , Masculino , Inquéritos Nutricionais , República da Coreia/epidemiologia , Fatores Socioeconômicos
12.
Plant Signal Behav ; 16(12): 1973703, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839799

RESUMO

Selaginella tamariscina is a lycophyta species that survives under extremely dry conditions via the mechanism of resurrection. This phenomenon involves the regulation of numerous genes that play vital roles in desiccation tolerance and subsequent rehydration. To identify resurrection-related genes, we analyzed the transcriptome between dehydration conditions and rehydration conditions of S. tamariscina. The de novo assembly generated 124,417 transcripts with an average size of 1,000 bp and 87,754 unigenes. Among these genes, 1,267 genes and 634 genes were up and down regulated by rehydration compared to dehydration. To understand gene function, we annotated Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The unigenes encoding early light-inducible protein (ELIP) were down-regulated, whereas pentatricopeptide repeat-containing protein (PPR), late embryogenesis abundant proteins (LEA), sucrose nonfermenting protein (SNF), trehalose phosphate phosphatase (TPP), trehalose phosphate synthase (TPS), and ABC transporter G family (ABCG) were significantly up-regulated in response to rehydration conditions by differentially expressed genes (DEGs) analysis. Several studies provide evidence that these genes play a role in stress environment. The ELIP and PPR genes are involved in chloroplast protection during dehydration and rehydration. LEA, SNF, and trehalose genes are known to be oxidant scavengers that protect the cell structure from the deleterious effect of drought. TPP and TPS genes were found in the starch and sucrose metabolism pathways, which are essential sugar-signaling metabolites regulating plant metabolism and other biological processes. ABC-G gene interacts with abscisic acid (ABA) phytohormone in the stomata opening during stress conditions. Our findings provide valuable information and candidate resurrection genes for future functional analysis aimed at improving the drought tolerance of crop plants.


Assuntos
Selaginellaceae , Ácido Abscísico/metabolismo , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma/genética
13.
Plants (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203474

RESUMO

Berberis koreana is a medicinal plant containing berberine, which is a bioactive compound of the benzylisoquinoline alkaloid (BIA) class. BIA is widely used in the food and drug industry for its health benefits. To investigate the berberine biosynthesis pathway, gene expression analysis was performed in leaves, flowers, and fruits at different stages of growth. This was followed by full-length cDNA sequencing analysis using the PacBio sequencer platform to determine the number of isoforms of those expressed genes. We identified 23,246 full-length unigenes, among which 8479 had more than one isoform. The number of isoforms ranged between two to thirty-one among all genes. Complete isoform analysis was carried out on the unigenes encoding BIA synthesis. Thirteen of the sixteen genes encoding enzymes for berberine synthesis were present in more than one copy. This demonstrates that gene duplication and translation into isoforms may contribute to the functional specificity of the duplicated genes and isoforms in plant alkaloid synthesis. Our study also demonstrated the streamlining of berberine biosynthesis via the absence of genes for enzymes of other BIAs, but the presence of all the genes for berberine biosynthesize in B. koreana. In addition to genes encoding enzymes for the berberine biosynthesis pathway, the genes encoding enzymes for other BIAs were not present in our dataset except for those encoding corytuberine synthase (CTS) and berbamunine synthase (BS). Therefore, this explains how B. koreana produces berberine by blocking the pathways leading to other BIAs, effectively only allowing the pathway to lead to berberine synthesis.

14.
J Clin Med ; 10(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34300212

RESUMO

Both minor and major depression have high prevalence and are important causes of social burden worldwide; however, there is still no objective indicator to detect minor depression. This study aimed to examine if voice could be used as a biomarker to detect minor and major depression. Ninety-three subjects were classified into three groups: the not depressed group (n = 33), the minor depressive episode group (n = 26), and the major depressive episode group (n = 34), based on current depressive status as a dimension. Twenty-one voice features were extracted from semi-structured interview recordings. A three-group comparison was performed through analysis of variance. Seven voice indicators showed differences between the three groups, even after adjusting for age, BMI, and drugs taken for non-psychiatric disorders. Among the machine learning methods, the best performance was obtained using the multi-layer processing method, and an AUC of 65.9%, sensitivity of 65.6%, and specificity of 66.2% were shown. This study further revealed voice differences in depressive episodes and confirmed that not depressed groups and participants with minor and major depression could be accurately distinguished through machine learning. Although this study is limited by a small sample size, it is the first study on voice change in minor depression and suggests the possibility of detecting minor depression through voice.

15.
J Ginseng Res ; 45(3): 450-455, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025138

RESUMO

Korean Red Ginseng (KRG) is an herbal oriental medicine known to alleviate cardiovascular dysfunction. To analysis the expression of diabetic cardiac complication-associated genes in db/db mice, we studied the cardiac gene expression following KRG treatment. In result, a total of 585 genes were found to be changed in db/db mice. Among the changed expression, 245 genes were found to 2-fold upregulated, and 340 genes were 2-fold downregulated. In addition, the changed gene expressions were ameliorated by KRG. In conclusion, KRG may be possible to normalize cardiac gene expressions in db/db mice.

16.
J Ginseng Res ; 45(2): 287-294, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33841009

RESUMO

BACKGROUND: Ginsenoside Rb1 (G-Rb1), one of the major active compounds in Panax ginseng, has already been shown to reduce inflammation in various diseases. Osteoarthritis (OA) has traditionally been considered a degenerative disease with degradation of joint articular cartilage. However, recent studies have shown the association of inflammation with OA. In the present study, we investigated whether Rb1 had an antiinflammatory effect on monoiodoacetate (MIA)-induced OA in ovariectomized rats as a model of postmenopausal arthritis. METHODS: G-Rb1 at a dosage of 3 and 10 µg/kg body weight was administered every 3 days intraarticularly for a period of 4 weeks to observe antiarthritic effects. Diclofenac (10 mg/kg) served as a positive control. RESULTS: The administration of Rb1 significantly ameliorated OA inflammatory symptoms and reduced serum levels of inflammatory cytokines. Furthermore, G-Rb1 administration considerably enhanced the expression of bone morphogenetic protein-2 and collagen 2A and reduced the levels of matrix metalloproteinase-13 genes, indicating a chondroprotective effect of G-Rb1. G-Rb1 also significantly reduced the expression of several inflammatory cytokines/chemokines (interferon gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1)/CCL-2, interleukin [IL]-1ß, and IL-6). Histological analysis demonstrated that G-Rb1 significantly attenuated the pathological changes in MIA-induced OA in ovariectomized rats. Safranin O and toluidine blue staining further demonstrated that G-Rb1 effectively prevented the degradation of cartilage and glycosaminoglycans, respectively. CONCLUSION: Overall, our results suggest that G-Rb1 exerts cartilage protective effect on MIA-induced ovariectomized OA rats, by inhibiting inflammatory mediators such as IL-6, IL-1ß, MCP-1/CCL-2, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). These results shed a light on possible therapeutic application of G-Rb1 in OA.

17.
Methods Mol Biol ; 2250: 207-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33900607

RESUMO

Transposable elements (TEs) are mobile, recurring DNA sequences scattered throughout genome and have a large impact on genome structure and function. Several genetic marker techniques were developed to exploit their ubiquitous nature. Sequence-specific amplified polymorphism (SSAP) is a TE-based genetic marker system that has been used in various purposes such as measuring genetic relatedness between species, deciphering the population structures, molecular tagging for agronomic development in marker-assisted breeding (MAS). In addition to SSAP, sequence characterized amplified region (SCAR) from the SSAP markers provides an added advantage in identifying qualitative traits. Once developed SCAR markers are efficient, fast, and reliable method for genetic evaluations. These methods can be useful especially for the crops which have no genetic sequence information. With improved discriminatory ability they offer access to dynamic and polymorphic regions of genome. These techniques can be useful in breeding programs to improve or develop high yielding crops.


Assuntos
Elementos de DNA Transponíveis/genética , Marcadores Genéticos/genética , Polimorfismo Genético , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Zea mays/genética , DNA de Plantas/análise , DNA de Plantas/genética , Eletroforese em Gel de Poliacrilamida/métodos , Variação Genética , Genoma de Planta , Melhoramento Vegetal/métodos
18.
Genes Genomics ; 43(3): 195-198, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33630270

Assuntos
Cromossomos , Genômica
19.
J Korean Med Sci ; 36(3): e19, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33463093

RESUMO

BACKGROUND: We compared the risk factors for cardiovascular diseases (CVDs) among Koreans who did and did not participate in national periodic health check-ups, after adjustment for demographic factors, socioeconomic status, and lifestyle factors. METHODS: This cross-sectional study used data from the Korea National Health and Nutrition Examination Survey (KNHANES) from 2007 to 2018. Study subjects were classified as participants or non-participants in health check-ups, based on attendance at national periodic health check-ups during the previous two years. RESULTS: Comparison of participants and non-participants in health check-ups indicated statistically significant differences in age, gender, region, education level, monthly income, employment status, obesity, smoking, alcohol consumption, exercise, and marital status. After adjustment for demographic, socioeconomic factors, and health-related behaviors, woman non-participants were more likely to have metabolic syndrome, pre-hypertension, hypertension, prediabetes, and diabetes, and man non-participants were more likely to have pre-diabetes and diabetes. CONCLUSION: Subjects who participated in periodic health check-ups had fewer CVD-related risk factors than non-participants. Thus, health care providers should encourage non-participants to attend periodic health check-ups so that appropriate interventions can be implemented and decrease the risk for CVDs in these individuals.


Assuntos
Doenças Cardiovasculares/diagnóstico , Adulto , Idoso , Doenças Cardiovasculares/etiologia , Estudos Transversais , Bases de Dados Factuais , Diabetes Mellitus/diagnóstico , Exercício Físico , Feminino , Inquéritos Epidemiológicos , Humanos , Hipertensão/complicações , Hipertensão/diagnóstico , Modelos Logísticos , Masculino , Síndrome Metabólica/complicações , Síndrome Metabólica/diagnóstico , Pessoa de Meia-Idade , Razão de Chances , República da Coreia , Fatores de Risco
20.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440692

RESUMO

The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginellaceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Selaginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly. Comparative analyses of 19 lycophytes, including two Huperzia and one Isoetes species, revealed unique phylogenetic relationships between Selaginella species and related lycophytes, reflected by structural rearrangements involving two rounds of large inversions that resulted in dynamic changes between IR and DR blocks in the plastome sequence. Furthermore, we present other uncommon characteristics, including a small genome size, drastic reductions in gene and intron numbers, a high GC content, and extensive RNA editing. Although the 16 Selaginella species examined may not fully represent the genus, our findings suggest that Selaginella plastomes have undergone unique evolutionary events yielding genomic features unparalleled in other lycophytes, ferns, or seed plants.


Assuntos
Genoma de Planta , Genomas de Plastídeos , Genômica , Selaginellaceae/genética , Composição de Bases , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Tamanho do Genoma , Genômica/métodos , Íntrons , Filogenia , Edição de RNA , Selaginellaceae/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA