Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
2.
Nat Commun ; 15(1): 375, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195640

RESUMO

Selective autophagy is an essential process to maintain cellular homeostasis through the constant recycling of damaged or superfluous components. Over a dozen selective autophagy pathways mediate the degradation of diverse cellular substrates, but whether these pathways can influence one another remains unknown. We address this question using pexophagy, the autophagic degradation of peroxisomes, as a model. We show in cells that upregulated pexophagy impairs the selective autophagy of both mitochondria and protein aggregates by exhausting the autophagy initiation factor, ULK1. We confirm this finding in cell models of the pexophagy-mediated form of Zellweger Spectrum Disorder, a disease characterized by peroxisome dysfunction. Further, we extend the generalizability of limited selective autophagy by determining that increased protein aggregate degradation reciprocally reduces pexophagy using cell models of Parkinson's Disease and Huntington's Disease. Our findings suggest that the degradative capacity of selective autophagy can become limited by an increase in one substrate.


Assuntos
Doença de Huntington , Doença de Parkinson , Humanos , Macroautofagia/genética , Autofagia/genética , Doença de Huntington/genética , Mitocôndrias/genética , Doença de Parkinson/genética
3.
EBioMedicine ; 96: 104809, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37738832

RESUMO

BACKGROUND: The intestine of children with severe malnutrition (SM) shows structural and functional changes that are linked to increased infection and mortality. SM dysregulates the tryptophan-kynurenine pathway, which may impact processes such as SIRT1- and mTORC1-mediated autophagy and mitochondrial homeostasis. Using a mouse and organoid model of SM, we studied the repercussions of these dysregulations on malnutrition enteropathy and the protective capacity of maintaining autophagy activity and mitochondrial health. METHODS: SM was induced through feeding male weanling C57BL/6 mice a low protein diet (LPD) for 14-days. Mice were either treated with the NAD+-precursor, nicotinamide; an mTORC1-inhibitor, rapamycin; a SIRT1-activator, resveratrol; or SIRT1-inhibitor, EX-527. Malnutrition enteropathy was induced in enteric organoids through amino-acid deprivation. Features of and pathways to malnutrition enteropathy were examined, including paracellular permeability, nutrient absorption, and autophagic, mitochondrial, and reactive-oxygen-species (ROS) abnormalities. FINDINGS: LPD-feeding and ensuing low-tryptophan availability led to villus atrophy, nutrient malabsorption, and intestinal barrier dysfunction. In LPD-fed mice, nicotinamide-supplementation was linked to SIRT1-mediated activation of mitophagy, which reduced damaged mitochondria, and improved intestinal barrier function. Inhibition of mTORC1 reduced intestinal barrier dysfunction and nutrient malabsorption. Findings were validated and extended using an organoid model, demonstrating that resolution of mitochondrial ROS resolved barrier dysfunction. INTERPRETATION: Malnutrition enteropathy arises from a dysregulation of the SIRT1 and mTORC1 pathways, leading to disrupted autophagy, mitochondrial homeostasis, and ROS. Whether nicotinamide-supplementation in children with SM could ameliorate malnutrition enteropathy should be explored in clinical trials. FUNDING: This work was supported by the Bill and Melinda Gates Foundation, the Sickkids Research Institute, the Canadian Institutes of Health Research, and the University Medical Center Groningen.

4.
J Cell Biol ; 222(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37289133

RESUMO

Formation and fission of tubules from autolysosomes, endolysosomes, or phagolysosomes are required for lysosome reformation. However, the mechanisms governing these processes in these different lysosomal organelles are poorly understood. Thus, the role of phosphatidylinositol-4-phosphate (PI(4)P) is unclear as it was shown to promote the formation of tubules from phagolysosomes but was proposed to inhibit tubule formation on autolysosomes because the loss of PI4KIIIß causes extensive lysosomal tubulation. Using super-resolution live-cell imaging, we show that Arf1-PI4KIIIß positive vesicles are recruited to tubule fission sites from autolysosomes, endolysosomes, and phagolysosomes. Moreover, we show that PI(4)P is required to form autolysosomal tubules and that increased lysosomal tubulation caused by loss of PI4KIIIß represents impaired tubule fission. At the site of fission, we propose that Arf1-PI4KIIIß positive vesicles mediate a PI(3)P signal on lysosomes in a process requiring the lipid transfer protein SEC14L2. Our findings indicate that Arf1-PI4KIIIß positive vesicles and their regulation of PI(3)P are critical components of the lysosomal tubule fission machinery.


Assuntos
Fator 1 de Ribosilação do ADP , Lisossomos , Fosfotransferases (Aceptor do Grupo Álcool) , Transdução de Sinais , Lisossomos/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
5.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311584

RESUMO

SLIT/ROBO signaling impacts many aspects of tissue development and homeostasis, in part, through the regulation of cell growth and proliferation. Recent studies have also linked SLIT/ROBO signaling to the regulation of diverse phagocyte functions. However, the mechanisms by which SLIT/ROBO signaling acts at the nexus of cellular growth control and innate immunity remain enigmatic. Here, we show that SLIT2-mediated activation of ROBO1 leads to inhibition of mTORC1 kinase activity in macrophages, leading to dephosphorylation of its downstream targets, including transcription factor EB and ULK1. Consequently, SLIT2 augments lysosome biogenesis, potently induces autophagy, and robustly promotes the killing of bacteria within phagosomes. Concordant with these results, we demonstrate decreased lysosomal content and accumulated peroxisomes in the spinal cords of embryos from Robo1 -/- , Robo2 -/- double knockout mice. We also show that impediment of auto/paracrine SLIT-ROBO signaling axis in cancer cells leads to hyperactivation of mTORC1 and inhibition of autophagy. Together, these findings elucidate a central role of chemorepellent SLIT2 in the regulation of mTORC1 activity with important implications for innate immunity and cancer cell survival.


Assuntos
Proteínas do Tecido Nervoso , Receptores Imunológicos , Animais , Camundongos , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Lisossomos , Bactérias , Alvo Mecanístico do Complexo 1 de Rapamicina
6.
Cell Mol Life Sci ; 80(7): 183, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338571

RESUMO

Peroxisomes are essential for mitochondrial health, as the absence of peroxisomes leads to altered mitochondria. However, it is unclear whether the changes in mitochondria are a function of preserving cellular function or a response to cellular damage caused by the absence of peroxisomes. To address this, we developed conditional hepatocyte-specific Pex16 deficient (Pex16 KO) mice that develop peroxisome loss and subjected them to a low-protein diet to induce metabolic stress. Loss of PEX16 in hepatocytes led to increased biogenesis of small mitochondria and reduced autophagy flux but with preserved capacity for respiration and ATP capacity. Metabolic stress induced by low protein feeding led to mitochondrial dysfunction in Pex16 KO mice and impaired biogenesis. Activation of PPARα partially corrected these mitochondrial disturbances, despite the absence of peroxisomes. The findings of this study demonstrate that the absence of peroxisomes in hepatocytes results in a concerted effort to preserve mitochondrial function, including increased mitochondrial biogenesis, altered morphology, and modified autophagy activity. Our study underscores the relationship between peroxisomes and mitochondria in regulating the hepatic metabolic responses to nutritional stressors.


Assuntos
Biogênese de Organelas , Peroxissomos , Camundongos , Animais , Peroxissomos/metabolismo , Mitocôndrias/metabolismo , Fígado/metabolismo , Autofagia
7.
Cell Mol Life Sci ; 80(3): 69, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36821008

RESUMO

Animal models have been utilized to understand the pathogenesis of Zellweger spectrum disorders (ZSDs); however, the link between clinical manifestations and molecular pathways has not yet been clearly established. We generated peroxin 5 homozygous mutant zebrafish (pex5-/-) to gain insight into the molecular pathogenesis of peroxisome dysfunction. pex5-/- display hallmarks of ZSD in humans and die within one month after birth. Fasting rapidly depletes lipids and glycogen in pex5-/- livers and expedites their mortality. Mechanistically, deregulated mitochondria and mechanistic target of rapamycin (mTOR) signaling act together to induce metabolic alterations that deplete hepatic nutrients and accumulate damaged mitochondria. Accordingly, chemical interventions blocking either the mitochondrial function or mTOR complex 1 (mTORC1) or a combination of both improve the metabolic imbalance shown in the fasted pex5-/- livers and extend the survival of animals. In addition, the suppression of oxidative stress by N-acetyl L-cysteine (NAC) treatment rescued the apoptotic cell death and early mortality observed in pex5-/-. Furthermore, an autophagy activator effectively ameliorated the early mortality of fasted pex5-/-. These results suggest that fasting may be detrimental to patients with peroxisome dysfunction, and that modulating the mitochondria, mTORC1, autophagy activities, or oxidative stress may provide a therapeutic option to alleviate the symptoms of peroxisomal diseases associated with metabolic dysfunction.


Assuntos
Jejum , Mitocôndrias , Receptor 1 de Sinal de Orientação para Peroxissomos , Peixe-Zebra , Animais , Humanos , Autofagia/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo
8.
Autophagy ; 19(6): 1781-1802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541703

RESUMO

Peroxisomes are rapidly degraded during amino acid and oxygen deprivation by a type of selective autophagy called pexophagy. However, how damaged peroxisomes are detected and removed from the cell is poorly understood. Recent studies suggest that the peroxisomal matrix protein import machinery may serve double duty as a quality control machinery, where they are directly involved in activating pexophagy. Here, we explored whether any matrix import factors are required to prevent pexophagy, such that their loss designates peroxisomes for degradation. Using gene editing and quantitative fluorescence microscopy on culture cells and a zebrafish model system, we found that PEX13, a component of the peroxisomal matrix import system, is required to prevent the degradation of otherwise healthy peroxisomes. The loss of PEX13 caused an accumulation of ubiquitinated PEX5 on peroxisomes and an increase in peroxisome-dependent reactive oxygen species that coalesce to induce pexophagy. We also found that PEX13 protein level is downregulated to aid in the induction of pexophagy during amino acid starvation. Together, our study points to PEX13 as a novel pexophagy regulator that is modulated to maintain peroxisome homeostasis.Abbreviations: AAA ATPases: ATPases associated with diverse cellular activities; ABCD3: ATP binding cassette subfamily D member; 3ACOX1: acyl-CoA oxidase; 1ACTA1: actin alpha 1, skeletal muscle; ACTB: actin beta; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; CAT: catalase; CQ: chloroquine; Dpf: days post fertilization: FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H2O2: hydrogen peroxide; HA - human influenza hemagglutinin; HBSS: Hanks' Balanced Salt Solution; HCQ; hydroxychloroquine; KANL: lysine alanine asparagine leucine; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYC: MYC proto-oncogene, bHLH transcription factor; MZ: maternal and zygotic; NAC: N-acetyl cysteine; NBR1 - NBR1 autophagy cargo receptor; PBD: peroxisome biogenesis disorder; PBS: phosphate-buffered saline; PEX: peroxisomal biogenesis factor; PTS1: peroxisome targeting sequence 1; RFP: red fluorescent protein; ROS: reactive oxygen speciess; iRNA: short interfering RNA; SKL: serine lysine leucine; SLC25A17/PMP34: solute carrier family 25 member 17; Ub: ubiquitin; USP30: ubiquitin specific peptidase 30.


Assuntos
Autofagia , Macroautofagia , Animais , Humanos , Camundongos , Autofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Actinas/metabolismo , Peixe-Zebra/metabolismo , Fibroblastos/metabolismo , Ubiquitina/metabolismo , Peroxissomos/metabolismo , Aminoácidos/metabolismo , Oxigênio/metabolismo , Sirolimo , Proteínas de Membrana/metabolismo
9.
Nat Commun ; 13(1): 7576, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481684

RESUMO

Mortality in children with severe malnutrition is strongly related to signs of metabolic dysfunction, such as hypoglycemia. Lower circulating tryptophan levels in children with severe malnutrition suggest a possible disturbance in the tryptophan-nicotinamide adenine dinucleotide (TRP-NAD+) pathway and subsequently in NAD+ dependent metabolism regulator sirtuin1 (SIRT1). Here we show that severe malnutrition in weanling mice, induced by 2-weeks of low protein diet feeding from weaning, leads to an impaired TRP-NAD+ pathway with decreased NAD+ levels and affects hepatic mitochondrial turnover and function. We demonstrate that stimulating the TRP-NAD+ pathway with NAD+ precursors improves hepatic mitochondrial and overall metabolic function through SIRT1 modulation. Activating SIRT1 is sufficient to induce improvement in metabolic functions. Our findings indicate that modulating the TRP-NAD+ pathway can improve liver metabolic function in a mouse model of severe malnutrition. These results could lead to the development of new interventions for children with severe malnutrition.


Assuntos
Hepatopatias , NAD , Camundongos , Animais , Triptofano
10.
Adv Mater ; 34(49): e2202841, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189841

RESUMO

Magnetism in topological materials creates phases exhibiting quantized transport phenomena with potential technological applications. The emergence of such phases relies on strong interaction between localized spins and the topological bands, and the consequent formation of an exchange gap. However, this remains experimentally unquantified in intrinsic magnetic topological materials. Here, this interaction is quantified in MnBi2 Te4 , a topological insulator with intrinsic antiferromagnetism. This is achieved by optically exciting Bi-Te p states comprising the bulk topological bands and interrogating the consequent Mn 3d spin dynamics, using a multimodal ultrafast approach. Ultrafast electron scattering and magneto-optic measurements show that the p states demagnetize via electron-phonon scattering at picosecond timescales. Despite being energetically decoupled from the optical excitation, the Mn 3d spins, probed by resonant X-ray scattering, are observed to disorder concurrently with the p spins. Together with atomistic simulations, this reveals that the exchange coupling between localized spins and the topological bands is at least 100 times larger than the superexchange interaction, implying an optimal exchange gap of at least 25 meV in the surface states. By quantifying this exchange coupling, this study validates the materials-by-design strategy of utilizing localized magnetic order to manipulate topological phases, spanning static to ultrafast timescales.

11.
Nat Commun ; 13(1): 1929, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396393

RESUMO

The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi2Te4. Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise 'forbidden' by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi2Te4, the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases.

12.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238864

RESUMO

The epidermal growth factor (EGF) receptor (EGFR) controls many aspects of cell physiology. EGF binding to EGFR elicits the membrane recruitment and activation of phosphatidylinositol-3-kinase, leading to Akt phosphorylation and activation. Concomitantly, EGFR is recruited to clathrin-coated pits (CCPs), eventually leading to receptor endocytosis. Previous work uncovered that clathrin, but not receptor endocytosis, is required for EGF-stimulated Akt activation, and that some EGFR signals are enriched in CCPs. Here, we examine how CCPs control EGFR signaling. The signaling adaptor TOM1L1 and the Src-family kinase Fyn are enriched within a subset of CCPs with unique lifetimes and protein composition. Perturbation of TOM1L1 or Fyn impairs EGF-stimulated phosphorylation of Akt2 but not Akt1. EGF stimulation also triggered the TOM1L1- and Fyn-dependent recruitment of the phosphoinositide 5-phosphatase SHIP2 to CCPs. Thus, the recruitment of TOM1L1 and Fyn to a subset of CCPs underlies a role for these structures in the support of EGFR signaling leading to Akt activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Clatrina , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-fyn , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Clatrina/metabolismo , Endocitose , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais
13.
World J Emerg Surg ; 17(1): 3, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033131

RESUMO

Skin and soft-tissue infections (SSTIs) encompass a variety of pathological conditions that involve the skin and underlying subcutaneous tissue, fascia, or muscle, ranging from simple superficial infections to severe necrotizing infections.Together, the World Society of Emergency Surgery, the Global Alliance for Infections in Surgery, the Surgical Infection Society-Europe, The World Surgical Infection Society, and the American Association for the Surgery of Trauma have jointly completed an international multi-society document to promote global standards of care in SSTIs guiding clinicians by describing reasonable approaches to the management of SSTIs.An extensive non-systematic review was conducted using the PubMed and MEDLINE databases, limited to the English language. The resulting evidence was shared by an international task force with different clinical backgrounds.


Assuntos
Infecções dos Tecidos Moles , Procedimentos Clínicos , Humanos , Infecções dos Tecidos Moles/cirurgia , Estados Unidos
14.
Autophagy ; 18(5): 1174-1186, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34524948

RESUMO

ABBREVIATIONS: BioID: proximity-dependent biotin identification; GO: gene ontology; OSBPL: oxysterol binding protein like; VAPA: VAMP associated protein A; VAPB: VAMP associated protein B and C.


Assuntos
Autofagia , Macroautofagia , Humanos
15.
Surg Infect (Larchmt) ; 23(2): 97-104, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34619068

RESUMO

Background: Clostridioides difficile infection (CDI) can result in life-threatening illness requiring surgery. Surgical options for managing severe or fulminant, non-perforated C. difficile colitis include total abdominal colectomy with end ileostomy or creation of a diverting loop ileostomy with antegrade vancomycin lavage. Methods: The Surgical Infection Society's Therapeutics and Guidelines Committee convened to develop guidelines for summarizing the current SIS recommendations for total abdominal colectomy versus diverting loop ileostomy with antegrade lavage for severe or fulminant, non-perforated C. difficile colitis. PubMed, Embase, and the Cochrane database were searched for pertinent studies. Severe infection was defined as laboratory diagnosis of C. difficile infection with leukocytosis (white blood cell count of ≥15,000 cells/mL) or elevated creatinine (serum creatinine level >1.5 mg/dL). Fulminant infection was defined as laboratory diagnosis of C. difficile infection with hypotension or shock, ileus, or megacolon. Perforation was defined as complete disruption of the colon wall. Total abdominal colectomy was defined as resection of the ascending, transverse, descending, and sigmoid colon with end ileostomy. For the purpose of the guideline, the terms subtotal colectomy, total abdominal colectomy, and rectal-sparing total colectomy were used interchangeably. Diverting loop ileostomy with antegrade enema was defined as creation of both a diverting loop ileostomy with intra-operative colonic lavage and post-operative antegrade vancomycin unless otherwise specified. Evaluation of the published evidence was performed using the Grades of Recommendation Assessment, Development and Evaluation (GRADE) system. Using a process of iterative consensus, all committee members voted to accept or reject each recommendation. Results: We recommend that total abdominal colectomy be the procedure of choice for definitive therapy of severe or fulminant, non-perforated C. difficile colitis. In select patients, colon preservation using diverting loop ileostomy with intra-colonic vancomycin may be associated with higher rates of ostomy reversal and restoration of gastrointestinal continuity but may lead to development of recurrent C. difficile colitis. Conclusions: This guideline summarizes the current Surgical Infection Society recommendations regarding use of total abdominal colectomy versus diverting loop ileostomy with antegrade lavage for adults with severe or fulminant, non-perforated C. difficile infection.


Assuntos
Clostridioides difficile , Colite , Clostridioides , Colectomia/efeitos adversos , Colectomia/métodos , Colite/cirurgia , Humanos , Ileostomia/efeitos adversos , Ileostomia/métodos , Irrigação Terapêutica/métodos
16.
Autophagy ; 18(4): 829-840, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34432599

RESUMO

Depolarized mitochondria can be degraded via mitophagy, a selective form of autophagy. The RAB GTPase RAB7A was recently shown to play a key role in this process. RAB7A regulates late endocytic trafficking under normal growth conditions but is translocated to the mitochondrial surface following depolarization. However, how RAB7A activity is regulated during mitophagy is not understood. Here, using a proximity-dependent biotinylation approach (miniTurbo), we identified C5orf51 as a specific interactor of GDP-locked RAB7A. C5orf51 also interacts with the RAB7A guanine nucleotide exchange factor (GEF) complex members MON1 and CCZ1. In the absence of C5orf51, localization of RAB7A on depolarized mitochondria is compromised and the protein is degraded by the proteasome. Furthermore, depletion of C5orf51 also inhibited ATG9A recruitment to depolarized mitochondria. Together, these results indicate that C5orf51 is a positive regulator of RAB7A in its shuttling between late endosomes and mitochondria to enable mitophagy.Abbreviations: ATG9A: autophagy related 9A; Baf A1: bafilomycin A1; BioID: proximity-dependent biotin identification; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CCZ1: CCZ1 homolog, vacuolar protein trafficking and biogenesis associated; DQ-BSA: dye quenched-bovine serum albumin; FYCO1: FYVE and coiled-coil domain autophagy adaptor 1; GAP: GTPase activating protein; GEF: guanine nucleotide exchange factor; KO: knockout; LRPPRC: leucine rich pentatricopeptide repeat containing; MG132: carbobenzoxy-Leu-Leu-leucinal; MON1: MON1 homolog, secretory trafficking associated; mtDNA: mitochondrial DNA; PINK1: PTEN induced kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; RMC1: regulator of MON1-CCZ1; TBC1D15: TBC1 domain family member 15; TBC1D17: TBC1 domain family member 17; TOMM20: translocase of outer mitochondrial membrane 20; WDR91: WD repeat domain 91; WT: wild type.


Assuntos
Autofagia , Mitofagia , Autofagia/fisiologia , DNA Mitocondrial , Endossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Mitofagia/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951587

RESUMO

Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in human PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not preclude the growth of human tumor xenografts in mice, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. We found that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Ácido Hialurônico/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Técnicas de Inativação de Genes , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Hexosaminas/biossíntese , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante Heterólogo
18.
Am J Emerg Med ; 50: 729-732, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34879494

RESUMO

BACKGROUND: Several case reports suggest that penetrating thoracic cage fractures are an important cause for hemopericardium and cardiac tamponade following blunt trauma. However, the prevalence of this mechanism of injury is not fully known, and considering this association may provide a better understanding of the utility of cardiac component of the FAST (Focused Assessment with Sonography for Trauma). OBJECTIVE: To determine the association of thoracic cage fractures and pericardial effusion in patients with blunt trauma. METHODS: We performed a retrospective, multicenter cohort study using the Trauma Quality Improvement Program (TQIP) database (2015-2017) of adults ≥18 years of age whose mechanism of injury was either a fall or motor vehicle accident. Thoracic cage fractures were defined as any rib or sternum fracture. The primary outcome was the presence of pericardial effusion. Confounding variables were accounted for using multivariable logistic regression. RESULTS: We included 1,673,704 patients in the study; 226,896 (14%) patients had at least one thoracic cage fracture. A pericardial effusion was present in 4923 (0.3%) patients. When a thoracic cage fracture was present, the odds of having a pericardial effusion was significantly higher (adjusted Odds Ratio [aOR] 6.5 [95% CI: 6.1-7.0]). Patients with left and right-sided rib fractures had similar odds of a pericardial effusion (aOR 1.2 [95% CI 1.04-1.4]). Sternal fractures carried the highest odds of having a pericardial effusion (aOR 11.1 [9.9-12.3]). CONCLUSION: Thoracic cage fractures secondary to blunt trauma represent a significant independent risk factor for the development of a pericardial effusion. Our findings lend support for the mechanism of bony injuries causing penetrating cardiac trauma. Given these findings, and the fact that many thoracic cage fractures are detected after the initial evaluation, we support maintaining the cardiac view in the FAST examination for all blunt trauma patients.


Assuntos
Derrame Pericárdico/etiologia , Fraturas das Costelas/complicações , Esterno/lesões , Ferimentos não Penetrantes/complicações , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Avaliação Sonográfica Focada no Trauma , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Derrame Pericárdico/diagnóstico , Derrame Pericárdico/epidemiologia , Prevalência , Estudos Retrospectivos , Fraturas das Costelas/diagnóstico por imagem , Fatores de Risco , Ferimentos não Penetrantes/diagnóstico por imagem , Adulto Jovem
19.
Nat Commun ; 12(1): 5354, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504082

RESUMO

Mitochondrial division is not an autonomous event but involves multiple organelles, including the endoplasmic reticulum (ER) and lysosomes. Whereas the ER drives the constriction of mitochondrial membranes, the role of lysosomes in mitochondrial division is not known. Here, using super-resolution live-cell imaging, we investigate the recruitment of lysosomes to the site of mitochondrial division. We find that the ER recruits lysosomes to the site of division through the interaction of VAMP-associated proteins (VAPs) with the lysosomal lipid transfer protein ORP1L to induce a three-way contact between the ER, lysosome, and the mitochondrion. We also show that ORP1L might transport phosphatidylinositol-4-phosphate (PI(4)P) from lysosomes to mitochondria, as inhibiting its transfer or depleting PI(4)P at the mitochondrial division site impairs fission, demonstrating a direct role for PI(4)P in the division process. Our findings support a model where the ER recruits lysosomes to act in concert at the fission site for the efficient division of mitochondria.


Assuntos
Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HeLa , Humanos , Microscopia Confocal/métodos , Interferência de RNA , Receptores de Esteroides/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA