Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Oncol ; 15(4): 682-694, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38993254

RESUMO

Background: The activation of the antitumor immune responses of T cells and natural killer (NK) cells is important to induce breast tumor shrinkage via preoperative chemotherapy. We evaluated how antitumor immune responses contribute to the effects of such therapy. Methods: Forty-three patients with stages I - IV breast cancer who underwent surgery between August 2018 and Jun 2023 after preoperative chemotherapy were enrolled. Peripheral natural killer (pNK) cell activity was assessed by 51Cr-release assay, and the counts and percentages of CD4+, CD8+, and NK cells and their subsets in peripheral blood were measured before and after chemotherapy by two-color flow cytometry. Associations of cell population changes with chemotherapy responses were analyzed. Results: On univariate analysis, relative to grade (G) ≤ 1 effects, G ≥ 2 therapeutic effects were associated significantly with human epidermal growth factor receptor 2 (HER-2)+ breast cancer (P = 0.024) and post-chemotherapy CD56+ CD16- NK cell accumulation (8.4% vs. 5.5%, P = 0.042), and tended to be associated with increased pre-chemotherapy CD56+ CD16- NK cell percentages (5.4% vs. 3.3%, P = 0.054) and pNK cell activity (42.0% vs. 34.5%, P = 0.057). The accumulation and increased percentage of CD56+ CD16- NK cells in patients with G ≥ 2 effects were not associated with changes in pNK cell activity or the disappearance of axillary lymph-node metastases. On multivariate analysis, G ≥ 2 therapeutic effects tended to be associated with higher pre-chemotherapy pNK levels (odds ratio = 0.96; 95% confidence interval: 0.921 - 1.002; P = 0.067). Conclusions: The accumulation of the immunoregulatory CD56+ CD16- NK cell subset in the peripheral blood before and after chemotherapy may lead to the production of cytokines that induce an antitumor immune response. Activation of the immune response mediated by CD56+ CD16- pNK cells after chemotherapy and their high counts before chemotherapy may contribute to the improvement of therapeutic effects against breast cancer.

2.
Cancers (Basel) ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38473345

RESUMO

Anticancer drugs induce apoptotic and non-apoptotic cell death in various cancer types. The signaling pathways for anticancer drug-induced apoptotic cell death have been shown to differ between drug-sensitive and drug-resistant cells. In atypical multidrug-resistant leukemia cells, the c-Jun/activator protein 1 (AP-1)/p53 signaling pathway leading to apoptotic death is altered. Cancer cells treated with anticancer drugs undergo c-Jun/AP-1-mediated apoptotic death and are involved in c-Jun N-terminal kinase activation and growth arrest- and DNA damage-inducible gene 153 (Gadd153)/CCAAT/enhancer-binding protein homologous protein pathway induction, regardless of the p53 genotype. Gadd153 induction is associated with mitochondrial membrane permeabilization after anticancer drug treatment and involves a coupled endoplasmic reticulum stress response. The induction of apoptosis by anticancer drugs is mediated by the intrinsic pathway (cytochrome c, Cyt c) and subsequent activation of the caspase cascade via proapoptotic genes (e.g., Bax and Bcl-xS) and their interactions. Anticancer drug-induced apoptosis involves caspase-dependent and caspase-independent pathways and occurs via intrinsic and extrinsic pathways. The targeting of antiapoptotic genes such as Bcl-2 enhances anticancer drug efficacy. The modulation of apoptotic signaling by Bcl-xS transduction increases the sensitivity of multidrug resistance-related protein-overexpressing epidermoid carcinoma cells to anticancer drugs. The significance of autophagy in cancer therapy remains to be elucidated. In this review, we summarize current knowledge of cancer cell death-related signaling pathways and their alterations during anticancer drug treatment and discuss potential strategies to enhance treatment efficacy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA