Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Curr Microbiol ; 81(7): 204, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831133

RESUMO

Erwinia amylovora, the primary causative agent of blight disease in rosaceous plants, poses a significant threat to agricultural yield worldwide, with limited effective countermeasures. The emergence of sustainable alternative agents such as bacteriophages is a promising solution for fire blight that specifically targets Erwinia. In this study, we isolated pEp_SNUABM_01 and pEa_SNUABM_55 from a South Korean apple orchard soil, analyzed their genomic DNA sequences, and performed a comprehensive comparative analysis of Hena1 in four distinct sections. This study aimed to unveil distinctive features of these phages, with a focus on host recognition, which will provide valuable insights into the evolution and characteristics of Henunavirus bacteriophages that infect plant pathogenic Erwinia spp. By elucidating the distinct genomic features of these phages, particularly in terms of host recognition, this study lays a foundation for their potential application in mitigating the risks associated with fire blight in Rosaceae plants on a global scale.


Assuntos
Bacteriófagos , Erwinia amylovora , Genoma Viral , Doenças das Plantas , Erwinia amylovora/virologia , Erwinia amylovora/genética , Doenças das Plantas/virologia , Doenças das Plantas/microbiologia , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Filogenia , Especificidade de Hospedeiro , Genômica , Malus/microbiologia , Malus/virologia , Microbiologia do Solo
2.
BMC Vet Res ; 20(1): 232, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802879

RESUMO

BACKGROUND: Human fishing activities have significantly affect environmental concern for marine ecosystems, conservation of marine mammals, and human health. Coastal cetaceans are highly vulnerable to ingestion of fishing gear, bycatching, or entanglement, all of which can be fatal for these animals. In particular, certain coastal dolphins and porpoises are heavily impacted by fishing gear such as angling gear or stownet, as their food often overlap with the target fish species of human fisheries. CASE PRESENTATION: This study presents a case of an Indo-Pacific finless porpoise (Neophocaena phocaenoides) beached on the coast of Jeju Island, Republic of Korea, with ingestion of fishing gear and severe Anisakis infection. Although this species inhabits waters ranging from the Persian Gulf to Taiwan, several stranded carcasses have been reported on Jeju Island in recent years. Post-mortem computed tomography revealed a bundle of four fishing hooks in the forestomach, along with nylon lines and steel lines with connectors, which were assumed to be angling gear for Jeju hairtail (Trichiurus lepturus). Further necroscopic investigation revealed that the forestomach contained a large number of Anisakis spp. (Nematoda: Anisakidae). Histological examination revealed a thickened forestomach wall with pinpoint and volcanic ulcerations, a thickened layer of stratified squamous epithelium, and infiltrated stroma in the squamous epithelium. CONCLUSIONS: This study emphasizes the urgent need to address the impact of fishing activities on marine mammals, marine litter pollution, and the bycatch problem in Korean seawater. In addition, the occurrence of N. phocaenoides in seawater around Jeju Island should be raised in future geographical ecology or veterinary pathology studies and when its distribution is updated.


Assuntos
Anisaquíase , Anisakis , Toninhas , Animais , Toninhas/parasitologia , República da Coreia , Anisaquíase/veterinária , Anisaquíase/parasitologia , Anisakis/isolamento & purificação , Pesqueiros , Tomografia Computadorizada por Raios X/veterinária , Masculino , Imageamento post mortem
3.
Arch Virol ; 169(1): 4, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079005

RESUMO

Mammaliicoccus sciuri is an opportunistic zoonotic pathogen in humans and animals. We isolated the Mammaliicoccus phage vB_MscM-PMS3, which was also able to infect and lyse M. sciuri and M. lentus. The phage genome is a linear dsDNA that is 147,811 bp in length and contains 206 ORFs and three tRNA genes. It showed low genome coverage (< 17%) and sequence identity (< 91.3%) to other phage genomes. Phylogenetic analysis based on the whole genome and major capsid protein revealed that this phage clustered with members of the subfamily Twortvirinae of the family Herelleviridae, but it was distinctly separated from the other members, indicating its uniqueness.


Assuntos
Bacteriófagos , Animais , Humanos , Bacteriófagos/genética , Filogenia , Genoma Viral , Genômica , Sequenciamento Completo do Genoma
4.
Animals (Basel) ; 13(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38136803

RESUMO

In this case report, we present a rare occurrence of a narrow-ridged finless porpoise (Neophocaena asiaeorientalis sunameri), discovered on the coast of Jeju Island, Republic of Korea, that was afflicted with adhesive bowel obstruction (ABO), a life-threatening condition that has scarcely been reported in cetaceans. Diagnosis of ABO was confirmed via radiological and clinical assessments. Post-mortem computed tomography and necropsy revealed ABO between two loops of the jejunum at the L8 level. The mesenteric tissue covering the intestinal lesion was severely thickened with increased tension. Both bowel loops were fixed to the mesentery and acutely angulated, leading to asymmetrical thickening of the cross-sectional bowel walls. The intestinal lumen was stenosed because of pressure from the firm mesenteric band, and no fecal matter was observed in the lumen of the posterior bowel or rectum. Calcified nodules were detected, and histological analysis suggested parasitic or suspected post-parasitic infections. The primary cause of the intestinal lesions is presumed to be a reaction related to parasitic infection. However, further investigations would establish a definitive link between parasitic infections and ABO in this species. This case highlights the importance of studying rare medical conditions in wildlife, providing valuable insights into marine mammal health.

5.
Heliyon ; 9(11): e22034, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034629

RESUMO

Fire blight is a bacterial disease that affects plants of the Rosaceae family and causes significant economic losses worldwide. Although antibiotics have been used to control the disease, concerns about their environmental impact and the potential to promote antibiotic resistance have arisen. Bacteriophages are being investigated as an alternative to antibiotics; however, their efficacy can be affected by environmental stresses, such as UV radiation. In this study, we optimized the formulation of Erwinia phages to enhance their stability in the field, focusing on improving their UV stability and adsorption using adjuvants. Our results confirmed that 4.5 % polysorbate 80 and kaolin improve phage stability under UV stress, resulting in an 80 % increase in PFU value and improved UV protection efficacy. Adsorption assays also demonstrated that polysorbate 80 and kaolin improved the absorption efficiency, with phages detected in plant for up to two weeks. These findings demonstrate the effectiveness of the auxiliary formulation of Erwinia bacteriophages against environmental stress.

6.
Fish Shellfish Immunol ; 141: 109081, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37726082

RESUMO

This study investigated the effects of dietary piperine (PIP) on growth performance, digestive enzymes, serum biochemical parameters, antioxidant and immune responses, and gene expression in Cyprinus carpio challenged with Aeromonas hydrophila. Six diets were prepared with PIP doses of 0, 0.5, 1.0, 2.0, 3.0, and 4.0 g/kg, corresponding with the control, PR50, PR100, PR200, PR300, and PR400, respectively. Fish were challenged with Aeromonas hydrophila after 8 weeks of feeding with the respective diets. Weight gain (PWG) and specific growth rate (SGR) were significantly enhanced, whereas feed conversion ratio (FCR) was lowered in PR200. The cumulative post-challenge survival was improved to 68.43% in the PR200 group compared with 28.08% in the control. Serum total protein and albumin levels were significantly enhanced in the PR200 group compared to the control. However, dietary PIP up to 3 g/kg had no significant effect on serum glucose, cortisol, aspartate aminotransferase, or alkaline phosphatase activities; however, the alanine aminotransferase level was lower (P < 0.05) in the PR200 group than in the control. Intestinal amylase, lipase, and protease activities increased in PR300, and intestinal amylase and lipase increased in the PR100 group (P < 0.05). The serum immunological indices (lysozyme, alternative complement pathway, phagocytic activity, and respiratory burst activity) were higher (P < 0.05) in the PR200 group than in the control group. Serum superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were significantly intensified in PR200-PR300 than in the control group, with the highest activity observed in the PR200 group. Malondialdehyde was significantly lower in the PR200 group than in the control group. Furthermore, SOD, CAT, and Nrf2 expression was strongly upregulated in the liver tissue of the PR200 and PR300 groups compared to that in the control. The transcript levels of pro-inflammatory cytokines viz. IL-1ß and TNF-α were significantly upregulated in the kidneys of the PR100 and PR200 post-challenged. In contrast, the anti-inflammatory cytokine IL-10 was significantly downregulated in the kidneys of PR200. The expression of HSP70 was upregulated only in the PR400. Quadratic regression analysis showed that the optimal dietary PIP level was estimated as 2.07-2.13 g/kg to maximize growth performance. Overall, these results indicate that dietary PIP at an appropriate level can improve immunity, cytokine gene expression, and disease resistance in C. carpio.


Assuntos
Antioxidantes , Carpas , Animais , Citocinas , Aeromonas hydrophila , Amilases , Dieta/veterinária , Resistência à Doença , Expressão Gênica
7.
Microorganisms ; 11(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764155

RESUMO

Amid the escalating challenges of antibiotic resistance, bacterial infections have emerged as a global threat. Bacteriophages (phages), viral entities capable of selectively infecting bacteria, are gaining momentum as promising alternatives to traditional antibiotics. Their distinctive attributes, including host specificity, inherent self-amplification, and potential synergy with antibiotics, render them compelling candidates. Phage engineering, a burgeoning discipline, involves the strategic modification of bacteriophages to enhance their therapeutic potential and broaden their applications. The integration of CRISPR-Cas systems facilitates precise genetic modifications, enabling phages to serve as carriers of functional genes/proteins, thereby enhancing diagnostics, drug delivery, and therapy. Phage engineering holds promise in transforming precision medicine, addressing antibiotic resistance, and advancing diverse applications. Emphasizing the profound therapeutic potential of phages, this review underscores their pivotal role in combatting bacterial diseases and highlights their significance in the post-antibiotic era.

8.
Sci Rep ; 13(1): 9110, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277552

RESUMO

Streptococcus bovis/equinus complex (SBSEC) is one of the most important lactic acid-producing rumen bacteria causing subacute ruminal acidosis. Despite the significance of the ruminal bacteria, lytic bacteriophages (phages) capable of infecting SBSEC in the rumen have been rarely characterized. Hence, we describe the biological and genomic characteristics of two lytic phages (designated as vB_SbRt-pBovineB21 and vB_SbRt-pBovineS21) infecting various SBSEC species, including the newly reported S. ruminicola. The isolated SBSEC phages were morphologically similar to Podoviridae and could infect other genera of lactic acid-producing bacteria, including Lactococcus and Lactobacillus. Additionally, they showed high thermal- and pH-stability, and those characteristics induce strong adaptation to the ruminal environment, such as the low pH found in subacute ruminal acidosis. Genome-based phylogeny revealed that both phages were related to Streptococcus phage C1 in the Fischettivirus. However, they had a lower nucleotide similarity and distinct genomic arrangements than phage C1. The phage bacteriolytic activity was evaluated using S. ruminicola, and the phages efficiently inhibited planktonic bacterial growth. Moreover, both phages could prevent bacterial biofilms of various SBSEC strains and other lactic acid-producing bacteria in vitro. Thus, the newly isolated two SBSEC phages were classified as new Fischettivirus members and could be considered as potential biocontrol agents against ruminal SBSEC bacteria and their biofilms.


Assuntos
Bacteriófagos , Streptococcus bovis , Animais , Streptococcus bovis/genética , Ruminantes , Ácido Láctico , República da Coreia
9.
Fish Shellfish Immunol ; 138: 108830, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37244318

RESUMO

This study evaluated the effects of jamun leaf extract (JLE) as a feed supplement on growth performance, haemato-immunological, oxidative stress-related parameters, and cytokine gene expression in Cyprinus carpio challenged with Aeromonas hydrophila.. Diets containing four different JLE concentrations, that is, 0 (basal diet), 5 (JLE5), 10 (JLE10), and 15 g kg-1 (JLE15), were fed to carp (6.17 ± 0.43 g) for eight weeks. Growth performance was significantly higher in JLE10. Haemato-immunological and antioxidant parameters were determined in fish at 48 h post-challenge with A. hydrohila. The cumulative survival was highest in JLE10 (69.69%) 14 days post-challenge. Serum protein (2.18 ± 0.06 g dL-1), lysozyme (32.38 ± 1.2 U mL-1), alternative complement pathway (70.43 ± 1.61 U mL-1), phagocytic activity (21.18 ± 0.48%), respiratory burst activity (0.289 ± 0.09 OD630nm), and immunoglobulin levels (6.67 ± 0.36 U mg mL-1) were significantly higher in JLE10 than in the control. Serum alanine aminotransferase (44.06 ± 1.62 Unit mL-1), aspartate aminotransferase (31.58 ± 1.82 Unit mL-1), and malondialdehyde (2.57 ± 0.26 nmol mL-1) levels were lower in JLE10 than in the control (p < 0.05), whereas myeloperoxidase activity was significantly higher in JLE5 and JLE10 than in the control. Superoxide dismutase levels in the serum were higher (p < 0.05) in JLE5 and JLE10 than in the other groups. Gene expression analysis revealed that the mRNA expression of pro-inflammatory cytokines TNF-α and IL-1ß was upregulated (p < 0.05) in the liver, head-kidney, and intestine of challenged carp in JLE10. The signalling molecule NF-κB p65 was upregulated in lymphoid organs in JLE10 but not in the liver. The anti-inflammatory cytokine IL-10 was significantly downregulated in challenged carp in JLE10 compared with that in the control. Quadratic regression analysis showed that optimal dietary JLE was estimated to be 9.03-10.15 g kg-1 to maximize the growth performance. Results of the present study revealed that dietary JLE at 10 g kg-1 can significantly improve the immunity and disease resistance of C. carpio. Thus, JLE is a promising food additive for carp aquaculture.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Syzygium , Animais , Carpas/genética , Carpas/metabolismo , Syzygium/genética , Syzygium/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Antioxidantes/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Extratos Vegetais/farmacologia , Ração Animal/análise , Aeromonas hydrophila/fisiologia
10.
Biology (Basel) ; 12(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36829459

RESUMO

The recent outbreak of blight in pome fruit plants has been a major concern as there are two indistinguishable Erwinia species, Erwinia amylovora and E. pyrifoliae, which cause blight in South Korea. Although there is a strict management protocol consisting of antibiotic-based prevention, the area and the number of cases of outbreaks have increased. In this study, we isolated four bacteriophages, pEp_SNUABM_03, 04, 11, and 12, that infect both E. amylovora and E. pyrifoliae and evaluated their potential as antimicrobial agents for administration against Erwinia-originated blight in South Korea. Morphological analysis revealed that all phages had podovirus-like capsids. The phage cocktail showed a broad spectrum of infectivity, infecting 98.91% of E. amylovora and 100% of E. pyrifoliae strains. The antibacterial effect was observed after long-term cocktail treatment against E. amylovora, whereas it was observed for both short- and long-term treatments against E. pyrifoliae. Genomic analysis verified that the phages did not encode harmful genes such as antibiotic resistance or virulence genes. All phages were stable under general orchard conditions. Collectively, we provided basic data on the potential of phages as biocontrol agents that target both E. amylovora and E. pyrifoliae.

11.
Fish Shellfish Immunol ; 132: 108514, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36596319

RESUMO

This study evaluated the effects of Bougainvillea glabra (BG) leaf as a feed supplement on growth, skin mucosal immune parameters, serum oxidative stress, expression of immune-related genes, and susceptibility to pathogen infection in carp Cyprinus carpio. Diets containing four different BG concentrations (g kg-1), i.e., 0 g (basal diet), 20 g (BG20), 30 g (BG30), 40 g (BG40), and 50 g (BG50), were fed to the carp (average weight: 14.03 ± 0.81 g) for 8 weeks. Skin mucosal immunological and serum antioxidant parameters were examined 8 weeks post-feeding. Growth performance was significantly higher in BG40. Among the examined skin mucosal immune parameters, lysozyme (33.79 ± 0.98 U mL-1), protein (6.88 ± 0.37 mg mL-1), immunoglobulin (IgM; 5.34 ± 0.37 unit-mg mL-1), and protease activity (3.18 ± 0.36%) were significantly higher in BG40 than in the control; whereas, there was no significant effect on the alkaline phosphatase level. Among serum immune activity, activities of lysozyme, the alternative complement pathway, and IgM were significantly higher in BG40. Phagocytic, and superoxide dismutase (SOD) activities were higher (P < 0.05) in BG30-BG50. Serum ALT, AST, and MDA levels were lower in BG40 than in the control (P < 0.05). Intestinal enzymatic activities were enhanced in BG40 and BG50 (P < 0.05), except for lipase in BG50. Gene expression analysis revealed that the mRNA expressions of antioxidant genes (SOD, GPx, and Nrf2), an anti-inflammatory gene (IL-10), and IκBα were significantly upregulated in BG40. Conversely, the pro-inflammatory gene IL-1ß and the signaling molecule NF-κB p65 were downregulated in BG40 and BG50, respectively. BG supplementation had no significant effect on TNF-α, TLR22, or HSP70 mRNA expressions. Moreover, fish in BG40 exhibited the highest relative post-challenge survival (67.74%) against Aeromonas hydrophila infection. These results suggested that dietary supplementation with BG leaves at 40 g/kg can significantly improve the growth performance, immune responses, and disease resistance of C. carpio. BG leaves are a promising food additive for carp in aquaculture.


Assuntos
Carpas , Infecções por Bactérias Gram-Negativas , Animais , Resistência à Doença , Carpas/metabolismo , Antioxidantes/metabolismo , Muramidase/farmacologia , Imunidade nas Mucosas , Suplementos Nutricionais/análise , Dieta/veterinária , RNA Mensageiro/metabolismo , Imunoglobulina M , Folhas de Planta , Superóxido Dismutase/farmacologia , Ração Animal/análise
12.
Antibiotics (Basel) ; 11(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36358221

RESUMO

Recently, there has been an increasing number of blight disease reports associated with Erwinia amylovora and Erwinia pyrifoliae in South Korea. Current management protocols that have been conducted with antibiotics have faced resistance problems and the outbreak has not decreased. Because of this concern, the present study aimed to provide an alternative method to control the invasive fire blight outbreak in the nation using bacteriophages (phages) in combination with an antibiotic agent (kasugamycin). Among 54 phage isolates, we selected five phages, pEa_SNUABM_27, 31, 32, 47, and 48, based on their bacteriolytic efficacy. Although only phage pEa_SNUABM_27 showed host specificity for E. amylovora, all five phages presented complementary lytic potential that improved the host infectivity coverage of each phage All the phages in the cocktail solution could lyse phage-resistant strains. These strains had a decreased tolerance to the antibiotic kasugamycin, and a synergistic effect of phages and antibiotics was demonstrated both in vitro and on immature wound-infected apples. It is noteworthy that the antibacterial effect of the phage cocktail or phage cocktail-sub-minimal inhibitory concentration (MIC) of kasugamycin was significantly higher than the kasugamycin at the MIC. The selected phages were experimentally stable under environmental factors such as thermal or pH stress. Genomic analysis revealed these are novel Erwinia-infecting phages, and did not encode antibiotic-, virulence-, or lysogenic phage-related genes. In conclusion, we suggest the potential of the phage cocktail and kasugamycin combination as an effective strategy that would minimize the use of antibiotics, which are being excessively used in order to control fire blight pathogens.

13.
J Aquat Anim Health ; 34(4): 167-173, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208041

RESUMO

With the growing demand for caviar products, sturgeon (family Acipenseridae) have become some of the most popular species in the aquaculture industry. Since sturgeon need more than 10 years to become sexually mature, protection against fatal diseases becomes particularly important in the industry. In March 2018, approximately 10% of Siberian Sturgeon Acipenser baerii fingerlings in a sturgeon hatchery in Jeolla Province, Republic of Korea, exhibited anorexia, abdominal distension, buoyancy loss, and abnormal behavior and eventually showed a 90% fatality rate. Twenty moribund fish were necropsied, and a distended stomach filled with gas was found in every case. A single colony dominated the intestinal lumen smear and was identified as Candida manassasensis by polymerase chain reaction targeting 18S ribosomal RNA. The same microorganism was also detected in the sturgeons' feed. Antifungal resistance was examined using the VITEK 2 system, and the isolate was susceptible to voriconazole, caspofungin, micafungin, and flucytosine. The environmental stress factor for this case was speculated as decreased water temperature. Since similar cases have been observed for many years, further research to optimize precise treatment and prevention methods is required.


Assuntos
Candidíase , Doenças dos Peixes , Peixes , Animais , Aquicultura , Candida , Peixes/genética , Intestinos
14.
Pathogens ; 11(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297273

RESUMO

Otitis externa is among the most prevalent diseases in dogs. If the underlying cause is not addressed, bacterial reinfection becomes frequent, necessitating antibiotic administration for an extended period of time. Prolonged treatment promotes the emergence of antibiotic-resistant bacteria and increases the risk of their transmission from animals to humans. This study aimed to analyze the antibiotic resistance pattern of the emerging pathogen Proteus mirabilis to identify bacterial virulence and antibiotic selection. Samples were collected from randomly encountered dogs with chronic otitis externa. Thirty-two strains of P. mirabilis were isolated and identified, using MALDI-TOF. The Kirby-Bauer disk diffusion method was used to assess the antibiotic susceptibility of P. mirabilis to 11 antibiotics. The isolates (n = 32) were most resistant to cefazolin (75%), trimethoprim-sulfamethoxazole (72%), chloramphenicol (72%), amoxicillin-clavulanate (63%), ampicillin (59%), cefepime (56%), ciprofloxacin (53%), aztreonam (50%), ceftazidime avibactam (50%), gentamicin (22%), and amikacin (16%). Moreover, 75% of isolates were found to be multidrug-resistant bacteria. P. mirabilis was found to have a high resistance-pattern ratio. Although the exact cause is unknown, continuous antibiotic use is thought to be a major factor. We concluded that antibiotic use must be prudent and selective to prevent antibiotic resistance.

15.
Antibiotics (Basel) ; 11(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36140043

RESUMO

With concern growing over antibiotics resistance, the use of bacteriophages to combat resistant bacteria has been suggested as an alternative strategy with which to enable the selective control of targeted pathogens. One major challenge that restrains the therapeutic application of bacteriophages as antibacterial agents is their short lifespan, which limits their antibacterial effect in vivo. Here, we developed a polylactic-co-glycolic acid (PLGA)/alginate-composite microsphere for increasing the lifespan of bacteriophages in vivo. The alginate matrix in PLGA microspheres encapsulated the bacteriophages and protected them against destabilization by an organic solvent. Encapsulated bacteriophages were detected in the tissue for 28 days post-administration, while the bacteriophages administered without advanced encapsulation survived in vivo for only 3-5 days. The bacteriophages with extended fate showed prophylaxis against the bacterial pathogens for 28 days post-administration. This enhanced prophylaxis is presumed to have originated from the diminished immune response against these encapsulated bacteriophages because of their controlled release. Collectively, composite encapsulation has prophylactic potential against bacterial pathogens that threaten food safety and public health.

16.
Front Microbiol ; 13: 925866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923398

RESUMO

In response to the increasing nosocomial infections caused by antimicrobial-resistant coagulase-negative staphylococci (CoNS), bacteriophages (phages) have emerged as an alternative to antibiotics. Staphylococcus ureilyticus, one of the representative species of the CoNS, is now considered a notable pathogen that causes nosocomial bloodstream infections, and its biofilm-forming ability increases pathogenicity and resistance to antimicrobial agents. In this study, a lytic phage infecting S. ureilyticus was newly isolated from wastewater collected from a sewage treatment plant and its biological and antimicrobial characteristics are described. The isolated phage, named vB_SurP-PSU3, was morphologically similar to Podoviridae and could simultaneously lyse some S. warneri strains used in this study. The sequenced genome of the phage consisted of linear dsDNA with 18,146 bp and genome-based phylogeny revealed that vB_SurP-PSU3 belonged to the genus Andhravirus. Although its overall genomic arrangement and contents were similar to those of other members of the Andhravirus, the predicted endolysin of vB_SurP-PSU3 distinctly differed from the other members of the genus. The bacteriolytic activity of vB_SurP-PSU3 was evaluated using S. ureilyticus ATCC 49330, and the phage could efficiently inhibit the planktonic growth of the bacteria. Moreover, the anti-biofilm analysis showed that vB_SurP-PSU3 could prevent the formation of bacterial biofilm and degrade the mature biofilm in vitro. In an additional cytotoxicity assay of vB_SurP-PSU3, no significant adverse effects were observed on the tested cell. Based on these findings, the newly isolated phage vB_SurP-PSU3 could be classified as a new member of Andhravirus and could be considered an alternative potential biocontrol agent against S. ureilyticus infections and its biofilm.

17.
Fish Shellfish Immunol ; 128: 371-379, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35948263

RESUMO

Natural products have gained considerable attention for improving fish growth performance and immunity to enhance disease resistance. This study evaluated the effect of dandelion polysaccharides (DP) on skin mucosal immune parameters, immune-related gene expression, and susceptibility to pathogen challenge in the Common carp Cyprinus carpio. Diets containing four different concentrations of DP (g Kg-1):0 g [basal diet], 0.5 g [D1], 1.5 g [D2], 2.5 g [D3], and 4.0 g [D4] were fed to the carp (average weight: 13.92 ± 0.83 g) for eight weeks. Growth parameters were analyzed four and eight weeks after feeding. Immunological, hematological, and antioxidant parameters were examined eight weeks post-feeding. Growth performance was significantly higher on D3, with a final weight gain of 71.48 ± 1.57 g and a specific growth rate of 3.06 ± 0.12. Among hematological parameters examined, erythrocyte, hematocrit, and mean corpuscular volume (MCV) levels were significantly higher in D3. Skin mucosal immune parameters, such as lysozyme (31.04 ± 1.02 Unit mL-1), alkaline phosphatase (122.6 ± 3.8 IU L-1), and protein level (10.6 ± 0.74 mg mL-1) were significantly higher in D3, while peroxidase activity was higher in D4. Furthermore, SOD activity was higher in D2-D3, whereas catalase activity was higher in D2-D4 (P < 0.05) than in the control. Malondialdehyde level decreased significantly in D3 (5.43 ± 0.36 nmol mL-1); whereas, serum ALT and AST levels were significantly lower on D2-D4. Intestinal tight-junction-related genes ZO-1 and Claudin 7 were significantly higher in the DP-fed groups; however, DP had no significant effect on claudin 3. Occludin expression was higher (p < 0.05) on D3 only. Pro-inflammatory cytokines (IL-1ß and TNF-α) and IFN-γ strongly upregulated in the head kidney at D3. Conversely, the expression of the anti-inflammatory cytokine interleukin-10, HSP70, and TOR were considerably downregulated in D3. Fish from D3 exhibited markedly higher relative post-challenge survival (66.67%) against Aeromonas hydrophila challenge. The results of the present study suggest that dietary supplements of DP at 2.5 g kg-1 can significantly improve the growth performance, skin mucosal, and serum antioxidant parameters, and strengthen the immunity of C. carpio. Therefore, DP is a promising food additive for carp aquaculture.


Assuntos
Produtos Biológicos , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Taraxacum , Fosfatase Alcalina , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carpas/metabolismo , Catalase , Claudina-3 , Citocinas/genética , Dieta/veterinária , Suplementos Nutricionais , Aditivos Alimentares , Interleucina-10 , Malondialdeído , Muramidase , Ocludina , Polissacarídeos/farmacologia , Superóxido Dismutase , Fator de Necrose Tumoral alfa
18.
Fish Shellfish Immunol ; 121: 197-204, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026409

RESUMO

In the aquaculture industry, an efficient and safe water purification system is important to prevent mass mortality by virulent pathogens. As extensive use of traditional methods (e.g.: povidone-iodine, ozone, ultraviolet irradiation, formalin, and chlorine dioxide) have adverse effects on cultured fish, an appropriate and alternative water purification method is vital for the sustainability of the industry. Non-thermal plasma technology has been successfully used for various biomedical purposes (e.g: food sterilization, medical device disinfection, wound healing, cancer therapy, etc.) and has great potential to be used as a sterilizing system. However, few studies have been conducted on its usefulness in the aquaculture industry. In this study, we investigated the bactericidal efficacy of plasma-activated water induced by non-thermal plasma and its histopathological as well as immunological adverse effects on koi. A highly virulent Aeromonas hydrophila SNU HS7, which caused massive mortality of koi, was used for this study. Non-thermal plasma was applied for 10 min to the fish tanks with 1.2 × 109 CFU/mL SNU HS7 using PLMB-20 system to confirm the sterilization efficacy and to observe the survival and immunological reaction of koi for 14 days. As a result, gross pathological, histopathological, and immunological investigations did not reveal any significant adverse effects in fish as compared to the control groups. To the best of our knowledge, this is the first study showing that non-thermal plasma can be used for sterilization of rearing water without giving significant physiological damage to the fish, even under the assumption of extreme situations. As plasma can effectively sterilize not only bacteria but also other unknown pathogens, the results of this study are showing a promising future in purifying water in aquaculture practice.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila , Animais , Antibacterianos , Aquicultura , Carpas/imunologia , Carpas/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Gases em Plasma , Água
19.
Arch Virol ; 167(2): 655-658, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35043229

RESUMO

Salmonellosis is a disease of critical concern for public health, and the use of bacteriophages is among the most promising approaches to combating Salmonella. As Salmonella has various serotypes and strains, and bacteriophages are virulent to specific hosts, it is important to isolate phages and evaluate interactions with their hosts. In the present study, a novel Salmonella-infecting bacteriophage, pSal-SNUABM-01, was isolated and characterized. Transmission electron microscopy revealed that the bacteriophage is a member of the family Podoviridae and possesses an elongated head and a short tail. The phage genome is circular and 89,500 bp in size. A total of 162 open reading frames were predicted, eight of which were tRNAs. Morphological and genomic analysis revealed that pSal-SNUABM-01 is closely related to phage 7-11. In phylogenetic analysis, pSal-SNUABM-01 and 7-11 did not cluster together with the members of any established genus, suggesting that these two phages comprise a novel genus. The results of this study enhance our understanding of the phylogeny of the family Podoviridae and might be applicable to the development of bacteriophage treatments against Salmonella infections.


Assuntos
Bacteriófagos , Podoviridae , Bacteriófagos/genética , Genoma Viral , Genômica , Fases de Leitura Aberta , Filogenia , Podoviridae/genética , Salmonella/genética , Análise de Sequência de DNA
20.
Microorganisms ; 9(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683360

RESUMO

The bacterial genus Pseudomonas is a common causative agent of infections in veterinary medicine. In this study, we focused on Pseudomonas aeruginosa canine otitis externa isolates. Due to prolonged antibiotic treatment of otitis externa, antibiotic resistance is common and has become a major complication. Many alternatives to antibiotics have been studied, with bacteriophages emerging as the most promising alternatives. Here, we isolated and characterized a novel phage, pPa_SNUABM_DT01, by investigating its morphology, growth, lysis kinetics, and genomic characteristics. Phages have a vigorous capacity to eliminate bacterial cells through bacterial lysis. This capacity is dependent on the multiplicity of infection (MOI), but even at low MOIs, the phage successfully inhibited bacterial regrowth. The phage genome was 265,520 bp in size and comprised 312 putative open reading frames (ORFs). Comparative genome analysis demonstrated that the phage is a novel species in Myoviridae. The nucleotide similarity was moderately high compared with the Pseudomonas virus, Noxifer. However, a phylogenetic analysis and a dot plot indicated that pPa_SNUABM_DT01 is not closely related to the Phikzvirus or Noxifervirus genus but, instead, belongs to a novel one. The genome comparisons also indicate that the phage, pPa_SNUABM_DT01, could be a novel genus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA