Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 15(1): 3459, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658566

RESUMO

Establishing dependable, cost-effective electrical connections is vital for enhancing device performance and shrinking electronic circuits. MXenes, combining excellent electrical conductivity, high breakdown voltage, solution processability, and two-dimensional morphology, are promising candidates for contacts in microelectronics. However, their hydrophilic surfaces, which enable spontaneous environmental degradation and poor dispersion stability in organic solvents, have restricted certain electronic applications. Herein, electrohydrodynamic printing technique is used to fabricate fully solution-processed thin-film transistors with alkylated 3,4-dihydroxy-L-phenylalanine functionalized Ti3C2Tx (AD-MXene) as source, drain, and gate electrodes. The AD-MXene has excellent dispersion stability in ethanol, which is required for electrohydrodynamic printing, and maintains high electrical conductivity. It outperformed conventional vacuum-deposited Au and Al electrodes, providing thin-film transistors with good environmental stability due to its hydrophobicity. Further, thin-film transistors are integrated into logic gates and one-transistor-one-memory cells. This work, unveiling the ligand-functionalized MXenes' potential in printed electrical contacts, promotes environmentally robust MXene-based electronics (MXetronics).

3.
ACS Nano ; 17(11): 10898-10905, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37222273

RESUMO

Developing a methodology to enhance long-term stability is one of the most important issues in MXene research, since they are prone to oxidation in the ambient environment. Although various approaches have been suggested to improve the stability of MXene, they have suffered from complicated processes and limited applicability to various types of MXene nanostructures. Herein, we report a simple and versatile technique to enhance the environmental stability of MXenes. Ti3C2Tx MXene films were decorated with a highly hydrophobic polymer, 1H,1H,2H,2H-perfluorodecyl methacrylate (PFDMA), using initiated chemical vapor deposition (iCVD) where iCVD allows the facile postdeposition of polymer films of desired thickness on MXene films. The oxidation resistance was evaluated by fabricating MXene gas sensors and measuring the change in signal-to-noise ratio (SNR) of volatile organic compound (VOC) gases under harsh conditions (RH 100% at 50 °C) for several weeks where the performance in the absence and presence of PFDMA was compared. The results show that while the SNR of PFDMA-Ti3C2Tx sensors was retained, a dramatic increase of the noise level and a decrease in the SNR were observed in pristine Ti3C2Tx. We believe that this simple and nondestructive method will offer great potential to enhance the stability of a wide range of MXenes.

4.
Small Methods ; 7(8): e2201579, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36929585

RESUMO

Surface chemistry influences not only physicochemical properties but also safety and applications of MXene nanomaterials. Fluorinated Ti3 C2 Tx MXene, synthesized using conventional HF-based etchants, raises concerns regarding harmful effects on electronics and toxicity to living organisms. In this study, well-delaminated halogen-free Ti3 C2 Tx flakes are synthesized using NaOH-based etching solution. The transversal surface plasmon mode of halogen-free Ti3 C2 Tx MXene (833 nm) confirmed red-shift compared to conventional Ti3 C2 Tx (752 nm), and the halogen-free Ti3 C2 Tx MXene has a different density of state by the high proportion of -O and -OH terminations. The synthesized halogen-free Ti3 C2 Tx exhibits a lower water contact angle (34.5°) and work function (3.6 eV) than those of fluorinated Ti3 C2 Tx (49.8° and 4.14 eV, respectively). The synthesized halogen-free Ti3 C2 Tx exhibits high biocompatibility with the living cells, as evidenced by no noticeable cytotoxicity, even at very high concentrations (2000 µg mL⁻1 ), at which fluorinated Ti3 C2 Tx caused ≈50% reduction in cell viability upon its oxidation. Additionally, the oxidation stability of halogen-free Ti3 C2 Tx is enhanced unexpectedly, which cumulatively provides a good rationale for pursuing the halogen-free routes for synthesizing MXene materials for their uses in biomedical and therapeutic applications.

5.
Small Methods ; 7(8): e2201715, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36855195

RESUMO

MXenes are an emerging class of 2D materials with unique properties including metallic conductivity, mechanical flexibility, and surface tunability, which ensure their utility for diverse applications. However, the synthesis of MXenes with high crystallinity and atomic stoichiometry in a low-cost process is still challenging because of the difficulty in controlling the oxygen substitute in the precursors and final products of MXenes, which limits their academic understanding and practical applications. Here, a novel cost-effective method is reported to synthesize a highly crystalline and stoichiometric Ti3 C2 Tx MXene with minimum substitutional oxygen impurities by controlling the amount of excess carbon and time of high-energy milling in carbothermal reduction of recycled TiO2 source. The highest used content (2 wt%) of excess-carbon yields TiC with the highest carbon content and minimal oxygen substitutes, which leads to the Ti3 AlC2 MAX phase with improved crystallinity and atomic stoichiometry, and finally Ti3 C2 Tx MXene with the highest electrical conductivity (11738 S cm-1 ) and superior electromagnetic shielding effectiveness. Additionally, the effects of carbon content and substitutional oxygen on the physical properties of TiC and Ti3 AlC2 are elucidated by density-functional-theory calculations. This inexpensive TiO2 -based method of synthesizing high-quality Ti3 C2 Tx MXene can facilitate large-scale production and thus accelerate global research on MXenes.

6.
ACS Nano ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374133

RESUMO

Ligands can control the surface chemistry, physicochemical properties, processing, and applications of nanomaterials. MXenes are the fastest growing family of two-dimensional (2D) nanomaterials, showing promise for energy, electronic, and environmental applications. However, complex oxidation states, surface terminal groups, and interaction with the environment have hindered the development of organic ligands suitable for MXenes. Here, we demonstrate a simple, fast, scalable, and universally applicable ligand chemistry for MXenes using alkylated 3,4-dihydroxy-l-phenylalanine (ADOPA). Due to the strong hydrogen-bonding and π-electron interactions between the catechol head and surface terminal groups of MXenes and the presence of a hydrophobic fluorinated alkyl tail compatible with organic solvents, the ADOPA ligands functionalize MXene surfaces under mild reaction conditions without sacrificing their properties. Stable colloidal solutions and highly concentrated liquid crystals of various MXenes, including Ti2CTx, Nb2CTx, V2CTx, Mo2CTx, Ti3C2Tx, Ti3CNTx, Mo2TiC2Tx, Mo2Ti2C3Tx, and Ti4N3Tx, have been produced in various organic solvents. Such products offer excellent electrical conductivity, improved oxidation stability, and excellent processability, enabling applications in flexible electrodes and electromagnetic interference shielding.

7.
Langmuir ; 38(41): 12657-12665, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36206453

RESUMO

While two-dimensional (2D) Ti3C2Tx MXene in aqueous dispersions spontaneously oxidizes into titanium dioxide (TiO2) nanocrystals, the crystallization mechanism has not been comprehensively understood and the resultant crystal structures are not controlled among three representative polymorphs: anatase, rutile, and brookite. In this study, such control on the lattice structures and domain sizes of the MXene-derived TiO2 crystallites is demonstrated by means of the oxidation conditions, pH, and temperature (3.0-11.0 and 20-100 °C, respectively). It is observed that the formation of anatase phase is preferred against rutile phase in more basic and hotter oxidizing solutions, and even 100% anatase can be obtained at pH 11.0 and 100 °C. At lower pH and temperature, the portion of rutile phase increases such that it reaches ∼70% at pH 3 and 20 °C. Under certain circumstances, small portion of brookite phase is also observed. Smaller domain sizes of both anatase and rutile phases are observed in more basic oxidizing solutions and at lower temperatures. Based on these experimental results, we propose the crystallization mechanism in which the oxidative dissociation of Ti3C2Tx first produces Ti ions as the intermediate state, and they bind to abundant oxygen in the aqueous dispersions, and nucleate and crystallize into TiO2.

8.
Nat Commun ; 13(1): 5615, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153310

RESUMO

Controlling the orientation of two-dimensional materials is essential to optimize or tune their functional properties. In particular, aligning MXene, a two-dimensional carbide and/or nitride material, has recently received much attention due to its high conductivity and high-density surface functional group properties that can easily vary based on its arranged directions. However, erecting 2D materials vertically can be challenging, given their thinness of few nanometres. Here, vertical alignment of Ti3C2Tx MXene sheets is achieved by applying an in-plane electric field, which is directly observed using polarised optical microscopy and scanning electron microscopy. The electric field-induced vertical alignment parallel to the applied alternating-current field is demonstrated to be reversible in the absence of a field, back to a random orientation distribution. Interdigitated electrodes with uniaxially aligned MXene nanosheets are demonstrated. These can be further modulated to achieve various patterns using diversified electrode substrates. Anisotropic electrical conductivity is also observed in the uniaxially aligned MXene nanosheet film, which is quite different from the randomly oriented ones. The proposed orientation-controlling technique demonstrates potential for many applications including sensors, membranes, polarisers, and general energy applications.

9.
Small ; 18(46): e2203767, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36069279

RESUMO

2D transition metal carbides or nitrides (MXenes) have attracted considerable attention from materials scientists and engineers owing to their physicochemical properties. Currently, MXenes are synthesized from MAX-phase precursors using aqueous HF. Here, in order to enhance the production of MXenes, an anhydrous etching solution is proposed, consisting of dimethylsulfoxide as solvent with its high boiling point, NH4 HF2 as an etchant, CH3 SO3 H as an acid, and NH4 PF6 as an intercalant. The reaction temperature can be increased up to 100 °C to accelerate the etching and delamination of Ti3 AlC2 MAX crystals; in addition, the destructive side reaction of the produced Ti3 C2 Tx MXene is suppressed in the etchant. Consequently, the etching reaction is completed in 4 h at 100 °C and produces high-quality monolayer Ti3 C2 Tx with an electrical conductivity of 8200 S cm-1 and yield of over 70%. The Ti3 C2 Tx MXene fabricated via this modified synthesis exhibits different surface structures and properties arising from more F-terminations than those of Ti3 C2 Tx synthesized in aqueous HF2 T. The atypical surface structure of Ti3 C2 Tx MXene results in an exceptionally high ultimate tensile strength (167 ± 8 MPa), which is five times larger than those of Ti3 C2 Tx MXenes synthesized in aqueous HF solution (31.7 ± 7.8 MPa).

10.
ACS Sens ; 7(8): 2225-2234, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35838305

RESUMO

It is highly important to implement various semiconducting, such as n- or p-type, or conducting types of sensing behaviors to maximize the selectivity of gas sensors. To achieve this, researchers so far have utilized the n-p (or p-n) two-phase transition using doping techniques, where the addition of an extra transition phase provides the potential to greatly increase the sensing performance. Here, we report for the first time on an n-p-conductor three-phase transition of gas sensing behavior using Mo2CTx MXene, where the presence of organic intercalants and film thickness play a critical role. We found that 5-nm-thick Mo2CTx films with a tetramethylammonium hydroxide (TMAOH) intercalant displayed a p-type gas sensing response, while the films without the intercalant displayed a clear n-type response. Additionally, Mo2CTx films with thicknesses over 700 nm exhibited a conductor-type response, unlike the thinner films. It is expected that the three-phase transition was possible due to the unique and simultaneous presence of the intrinsic metallic conductivity and the high-density of surface functional groups of the MXene. We demonstrate that the gas response of Mo2CTx films containing tetramethylammonium (TMA) ions toward volatile organic compounds (VOCs), NH3, and NO2 is ∼30 times higher than that of deintercalated films, further showing the influence of intercalants on sensing performance. Also, DFT calculations show that the adsorption energy of NH3 and NO2 on Mo2CTx shifts from -0.973, -1.838 eV to -1.305, -2.750 eV, respectively, after TMA adsorption, demonstrating the influence of TMA in enhancing sensing performance.

11.
ACS Appl Mater Interfaces ; 13(19): 22855-22865, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33961388

RESUMO

Understanding the oxidation reaction of aqueous Ti3C2Tx MXene suspensions is very important for fostering fundamental academic studies as well as widespread industrial applications. Herein, we investigated the mechanism and kinetics of the oxidation reaction of aqueous Ti3C2Tx suspensions at various pH and temperature conditions. Through comprehensive analysis, the mechanism of the chemical oxidative degradation of aqueous Ti3C2Tx colloids was established. Chemical oxidation produces solid products such as TiO2 and amorphous carbon as well as various gaseous species including CH4, CO, CO2, and HF. Additionally, our comprehensive kinetic study proposes that aqueous Ti3C2Tx dispersions are degraded via an acid-catalyzed oxidation reaction, where, under acidic conditions, the protonation of the hydroxyl terminal groups on the Ti3C2Tx flakes induces electron localization on titanium atoms and accelerates their oxidation reaction. In contrast, under basic conditions, the electrostatically alkali-metalized hydroxyl intermediates forming a bulky solvent cage results in less electron localization on titanium atoms, and thus retards their oxidative degradation.

12.
ACS Nano ; 15(5): 8860-8869, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33890774

RESUMO

Large-scale fabrication of MXene films is in high demand for various applications, but it remains difficult to meet industrial requirements. In this study, we develop a slot-die coating method for the preparation of large-area MXene membranes. The technique allows the fabrication of continuous and scalable coatings with a rapid coating speed of 6 mm s-1. The thickness can be readily controlled from the nanometer scale to the micrometer scale, and the alignment of the nanosheet is enhanced by the shear force of the slot-die head. Molecular separation experiments employing a film with a thickness of approximately 100 nm are performed. A nanofiltration performance with water permeance of 190 LMH/bar and molecular weight cutoff of 269 Da is achieved, surpassing previously reported results obtained using MXene-based nanofiltration membranes. The stability of the membrane is highlighted by its nanofiltration performance of 30 days under harsh oxidizing conditions, which is the longest operation ever achieved for a 2D material-based membrane. The extraordinary stability of the film suggests its high potential for industrial and practical applications. The antioxidizing phenomena can be attributed to self-protection of the MXene surface by adsorbed organic molecules, which are particularly stabilized with positively charged molecules via chemisorption.

13.
ACS Appl Mater Interfaces ; 13(13): 15827-15836, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779141

RESUMO

Two-dimensional graphene is of great interest for electromagnetic interference (EMI) shielding owing to its inherent electrical conductivity, lightweight, and excellent mechanical flexibility even at minor thicknesses. However, the complex synthesis and quality-control difficulties limit its application. In this study, we demonstrate that electrochemically exfoliated graphene (EEG) with post-reduction treatment is a promising candidate for lightweight EMI shielding materials. A facile electrochemical exfoliation approach produces a high-quality multilayer graphene with a high electrical conductivity of ∼600 S cm-1, owing to its low degree of oxidation. The reduction of EEG by three different methods, including chemical, thermal, and microwave treatments, causes the removal of surface functional groups as well as significant changes in the microstructure of the final films. The reduced graphene films by microwaves, which are driven by the improved electrical conductivity and large volume expansion, exhibit an EMI shielding effectiveness of 108 dB at a thickness of 125 µm, one of the largest EMI shielding values ever reported for graphene at comparable thicknesses.

14.
Adv Mater ; 32(9): e1906769, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31971302

RESUMO

Miniaturization of electronics demands electromagnetic interference (EMI) shielding of nanoscale dimension. The authors report a systematic exploration of EMI shielding behavior of 2D Ti3 C2 Tx MXene assembled films over a broad range of film thicknesses, monolayer by monolayer. Theoretical models are used to explain the shielding mechanism below skin depth, where multiple reflection becomes significant, along with the surface reflection and bulk absorption of electromagnetic radiation. While a monolayer assembled film offers ≈20% shielding of electromagnetic waves, a 24-layer film of ≈55 nm thickness demonstrates 99% shielding (20 dB), revealing an extraordinarily large absolute shielding effectiveness (3.89 × 106 dB cm2 g-1 ). This remarkable performance of nanometer-thin solution processable MXene proposes a paradigm shift in shielding of lightweight, portable, and compact next-generation electronic devices.

15.
ACS Nano ; 13(11): 12613-12620, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31525030

RESUMO

MXenes have attracted great attention for their potential applications in electrochemical and electronic devices due to their excellent characteristics. Traditional sound sources based on the thermoacoustic effect demonstrated that a conductor needs to have an extremely low heat capacity and high thermal conductivity. Hence, a thin MXene film with a low heat capacity per unit area (HCPUA) and special layered structure is emerging as a promising candidate to build loudspeakers. However, the use of MXenes in a sound source device has not been explored. Herein, we have successfully prepared sound source devices on an anodic aluminum oxide (AAO) and a flexible polyimide (PI) substrates by using the prepared Ti3C2 MXene nanoflakes. Due to the larger interlayer distance of MXene, the MXene-based sound source device has a higher sound pressure level (SPL) than that of graphene of the same thickness. High-quality Ti3C2 MXene nanoflakes were fabricated by selectively etching the Ti3AlC2 powder. The as-fabricated MXene sound source device on an AAO substrate exhibits a higher SPL of 68.2 dB (f = 15 kHz) and has a very stable sound spectrum output with frequency varying from 100 Hz to 20 kHz. A theoretical model has been built to explain the mechanism of the sound source device on an AAO substrate, matching well with the experimental results. Furthermore, the MXene sound source device based on a flexible PI substrate has been attached to the arms, back of the hand, and fingers, indicating an excellent acoustic wearability. Then, the MXene film is packaged successfully into a commercial earphone case and shows an excellent performance at high frequencies, which is very suitable for human audio equipment.

16.
ACS Appl Mater Interfaces ; 11(35): 32320-32327, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31405272

RESUMO

MXenes are a prominent family of two-dimensional materials because of their metallic conductivity and abundant surface functionalities. Although MXenes have been extensively studied as bulk particles or free-standing films, thin and transparent films are needed for optical, optoelectronic, sensing, and other applications. In this study, we demonstrate a facile method to fabricate ultrathin (∼10 nm), Ti3C2Tx MXene films by an interfacial assembly technique. The self-assembling behavior of MXene flakes resulted in films with a high stacking order and strong plane-to-plane adherence, where optimal films of 10 nm thickness displayed a low sheet resistance of 310 Ω/□. By using surface tension, films were transferred onto various types of planar and curved substrates. Moreover, multiple films were consecutively transferred onto substrates from a single batch of solution, showing the efficient use of the material. When the films were utilized as gas sensing channels, a high signal-to-noise ratio, up to 320, was observed, where the gas response of films assembled from small MXene flakes was 10 times larger than that from large flakes. This work provides a facile and efficient method to allow MXenes to be further exploited for thin-film applications.

17.
ACS Sens ; 4(5): 1365-1372, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31062965

RESUMO

Gas molecules are known to interact with two-dimensional (2D) materials through surface adsorption where the adsorption-induced charge transfer governs the chemiresistive sensing of various gases. Recently, titanium carbide (Ti3C2T x) MXene emerged as a promising sensing channel showing the highest sensitivity among 2D materials and unique gas selectivity. However, unlike conventional 2D materials, MXenes show metallic conductivity and contain interlayer water, implying that gas molecules will likely interact in a more complex way than the typical charge transfer model. Therefore, it is important to understand the role of all factors that may influence gas sensing. Here, we studied the gas-induced interlayer swelling of Ti3C2T x MXene thin films and its influence on gas sensing performance. In situ X-ray diffraction was employed to simultaneously measure dynamic swelling behavior where Ti3C2T x MXene films displayed selective swelling toward ethanol vapor over CO2 gas. Results show that the controlling sodium ion concentration in the interlayers is highly important in tuning the swelling behavior and gas sensing performance. The degree of swelling matched well with the gas response intensity, and the highest gas selectivity toward ethanol vapor was achieved for Ti3C2T x sensing channels treated with 0.3 mM NaOH, which also displayed the largest amount of swelling. Our results demonstrate that controlling the interlayer transport of Ti3C2T x MXene is essential for enhancing the selective sensing of gas molecules.


Assuntos
Técnicas de Química Analítica/instrumentação , Gases/análise , Elementos de Transição/química , Difração de Raios X , Modelos Moleculares , Conformação Molecular
18.
Nanoscale ; 11(17): 8387-8393, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-30984957

RESUMO

Two-dimensional (2D) transition metal carbides (MXenes) exhibit outstanding performances in many applications, such as energy storage, optoelectronics, and electrocatalysts. However, colloidal solutions of Ti3C2Tx MXene flakes deteriorate rapidly under ambient conditions due to the conversion of the titanium carbide to titanium dioxide. Here, we discuss the dominant factors influencing the rate of oxidation of Ti3C2Tx MXene flakes, and present guidelines for their storage with the aim of maintaining the intrinsic properties of the as-prepared material. The oxidation stability of the Ti3C2Tx flakes is dramatically improved in a system where water molecules and temperature were well-controlled. It was found that aqueous solutions of Ti3C2Tx MXene can be chemically stable for more than 39 weeks when the storage temperature (-80 °C) is sufficiently low to cease the oxidation processes. It was also found that if the Ti3C2Tx flakes are dispersed in ethanol, the degradation process can be significantly delayed even at 5 °C. Moreover, the oxidation stability of the Ti3C2Tx flakes is dramatically improved in both cases, even in the presence of oxygen-containing atmosphere. We demonstrate practical applications of our approach by employing Ti3C2Tx in a gas sensor showing that when oxidation is inhibited, the device can retain the original electrical properties after 5 weeks of storage.

19.
RSC Adv ; 9(70): 41120-41125, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540088

RESUMO

Due to the growing demand for high energy density devices, Li-O2 batteries are considered as a next generation energy storage system. The battery performance is highly dependent on the Li2O2 morphology, which arises from formation pathways such as the surface growth and the solution growth models. Thus, controlling the formation pathway is important in designing cathode materials. Herein for the first time, we controlled the Li2O2 formation pathway by using Mo2CT x MXene on a catalyst support. The cathode was fabricated by mixing the positively charged CNT/CTAB solution with the negatively charged Mo2CT x solution. After introducing Mo2CT x , important battery performance metrics were considerably enhanced. More importantly, the discharge product analysis showed that the functional groups on the surface of Mo2CT x inhibit the adsorption of O2 on the cathode surface, resulting in the formation of toroidal Li2O2 via the solution growth model. It was supported by density functional theory (DFT) calculations that adsorption of O2 on the Mo2CT x surface is implausible due to the large energy penalty for the O2 adsorption. Therefore, the introduction of MXene with abundant functional groups to the cathode surface can provide a cathode design strategy and can be considered as a universal method in generating toroidal Li2O2 morphology.

20.
Phys Chem Chem Phys ; 20(25): 17000-17008, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29900454

RESUMO

Controlling wrinkle nanostructures of two-dimensional materials is critical for optimizing the material properties and device performance. In this study, we demonstrated the in situ synthesis of large-area MoS2 wrinkles on graphene by chemical-vapor-deposition-assisted sulfurization, and investigated the influence of graphene thickness and grain structures on the feature dimensions of MoS2 wrinkle nanostructures. The height, width, and overall surface roughness of the MoS2 wrinkles diminish as the number of graphene layers increases, which was further verified by determining the binding energy of graphene layers by density functional theory calculations. Furthermore, the feature dimensions of MoS2 wrinkle nanostructures were also influenced by graphene domain boundaries because of the difference in graphene nucleation density. This may be attributed to the influence of the mechanical properties of graphene substrates on the overall feature dimensions of MoS2 wrinkles, which are directly correlated with the interfacial adhesion energy. We believe that our findings may contribute toward the controllable synthesis of MoS2 wrinkle nanostructures and other two-dimensional materials used for high-performance devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA