Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3301, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331977

RESUMO

The study aims to develop a deep learning based automatic segmentation approach using the UNETR(U-net Transformer) architecture to quantify the volume of individual thigh muscles(27 muscles in 5 groups) for Sarcopenia assessment. By automating the segmentation process, this approach improves the efficiency and accuracy of muscle volume calculation, facilitating a comprehensive understanding of muscle composition and its relationship to Sarcopenia. The study utilized a dataset of 72 whole thigh CT scans from hip fracture patients, annotated by two radiologists. The UNETR model was trained to perform precise voxel-level segmentation and various metrics such as dice score, average symmetric surface distance, volume correlation, relative absolute volume difference and Hausdorff distance were employed to evaluate the model's performance. Additionally, the correlation between Sarcopenia and individual thigh muscle volumes was examined. The proposed model demonstrated superior segmentation performance compared to the baseline model, achieving higher dice scores (DC = 0.84) and lower average symmetric surface distances (ASSD = 1.4191 ± 0.91). The volume correlation between Sarcopenia and individual thigh muscles in the male group. Furthermore, the correlation analysis of grouped thigh muscles also showed negative associations with Sarcopenia in the male participants. This thesis presents a deep learning based automatic segmentation approach for quantifying individual thigh muscle volume in sarcopenia assessment. The results highlights the associations between Sarcopenia and specific individual muscles as well as grouped thigh muscle regions, particularly in males. The proposed method improves the efficiency and accuracy of muscle volume calculation, contributing to a comprehensive evaluation of Sarcopenia. This research enhances our understanding of muscle composition and performance, providing valuable insights for effective interventions in Sarcopenia management.


Assuntos
Sarcopenia , Humanos , Masculino , Sarcopenia/diagnóstico por imagem , Coxa da Perna/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Músculo Esquelético/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
2.
PLoS One ; 19(1): e0296282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165980

RESUMO

OBJECTIVE: Patients with Parkinson's disease (PD) have an increased risk of sarcopenia which is expected to negatively affect gait, leading to poor clinical outcomes including falls. In this study, we investigated the gait patterns of patients with PD with and without sarcopenia (sarcopenia and non-sarcopenia groups, respectively) using an app-derived program and explored if gait parameters could be utilized to predict sarcopenia based on machine learning. METHODS: Clinical and sarcopenia profiles were collected from patients with PD at Hoehn and Yahr (HY) stage ≤ 2. Sarcopenia was defined based on the updated criteria of the Asian Working Group for Sarcopenia. The gait patterns of the patients with and without sarcopenia were recorded and analyzed using a smartphone application. The random forest model was applied to predict sarcopenia in patients with PD. RESULTS: Data from 38 patients with PD were obtained, among which 9 (23.7%) were with sarcopenia. Clinical parameters were comparable between the sarcopenia and non-sarcopenia groups. Among various clinical and gait parameters, the average range of motion of the hip joint showed the highest association with sarcopenia. Based on the random forest algorithm, the combined difference in knee and ankle angles from standing still before walking to the maximum angle during walking (Kneeankle_diff), the difference between the angle when standing still before walking and the maximum angle during walking for the ankle (Ankle_dif), and the min angle of the hip joint (Hip_min) were the top three features that best predict sarcopenia. The accuracy of this model was 0.949. CONCLUSIONS: Using smartphone app and machine learning technique, our study revealed gait parameters that are associated with sarcopenia and that help predict sarcopenia in PD. Our study showed potential application of advanced technology in clinical research.


Assuntos
Doença de Parkinson , Sarcopenia , Humanos , Doença de Parkinson/complicações , Sarcopenia/complicações , Sarcopenia/diagnóstico , Marcha , Caminhada , Aprendizado de Máquina
3.
J Cachexia Sarcopenia Muscle ; 14(6): 2793-2803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884824

RESUMO

BACKGROUND: The relationship between physical function, musculoskeletal disorders and sarcopenia is intricate. Current physical function tests, such as the gait speed test and the chair stand test, have limitations in eliminating subjective influences. To overcome this, smart devices utilizing inertial measurement unit sensors and artificial intelligence (AI)-based methods are being developed. METHODS: We employed cutting-edge technologies, including the smart insole device and pose estimation based on AI, along with three classification models: random forest (RF), support vector machine and artificial neural network, to classify control and sarcopenia groups. Patient data of 83 individuals were divided into train and test sets, with approximately 67% allocated for training. Classification models were implemented using RStudio, considering individual and combined variables obtained through pose estimation and smart insole measurements. RESULTS: Performance evaluation of the classification models utilized accuracy, precision, recall and F1-score indicators. Using only pose estimation variables, accuracy ranged from 0.92 to 0.96, with F1-scores of 0.94-0.97. Key variables identified by the RF model were 'Hip_dif', 'Ankle_dif' and 'Hipankle_dif'. Combining variables from both methods increased accuracy to 0.80-1.00, with F1-scores of 0.73-1.00. CONCLUSIONS: In our study, a classification model that integrates smart insole and pose estimation technology was assessed. The RF model showed impressive results, particularly in the case of the Hip and Ankle variables. The growth of advanced measurement technologies suggests a promising avenue for identifying and utilizing additional digital biomarkers in the management of various disorders. The convergence of AI technologies with diagnostics and treatment approaches a promising future for enhanced interventions in conditions like sarcopenia.


Assuntos
Inteligência Artificial , Sarcopenia , Humanos , Análise da Marcha , Sarcopenia/diagnóstico , Marcha , Sapatos
4.
Chemometr Intell Lab Syst ; 2402023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37771843

RESUMO

We present metabolite identification software in the form of R Shiny. Metabolite identification by mass spectral matching in gas chromatography (GC-MS)-based untargeted metabolomics can be done by using the easy-to-use software. Various similarity measures are given and toy example using graphical user interface is presented.

5.
Sci Rep ; 13(1): 10602, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391464

RESUMO

The aim of this study is to compare variable importance across multiple measurement tools, and to use smart insole and artificial intelligence (AI) gait analysis to create variables that can evaluate the physical abilities of sarcopenia patients. By analyzing and comparing sarcopenia patients with non sarcopenia patients, this study aims to develop predictive and classification models for sarcopenia and discover digital biomarkers. The researchers used smart insole equipment to collect plantar pressure data from 83 patients, and a smart phone to collect video data for pose estimation. A Mann-Whitney U was conducted to compare the sarcopenia group of 23 patients and the control group of 60 patients. Smart insole and pose estimation were used to compare the physical abilities of sarcopenia patients with a control group. Analysis of joint point variables showed significant differences in 12 out of 15 variables, but not in knee mean, ankle range, and hip range. These findings suggest that digital biomarkers can be used to differentiate sarcopenia patients from the normal population with improved accuracy. This study compared musculoskeletal disorder patients to sarcopenia patients using smart insole and pose estimation. Multiple measurement methods are important for accurate sarcopenia diagnosis and digital technology has potential for improving diagnosis and treatment.


Assuntos
Análise da Marcha , Sarcopenia , Humanos , Inteligência Artificial , Exame Físico , Articulação do Tornozelo , Biomarcadores , Sarcopenia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA