Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928647

RESUMO

This study evaluates the efficacy of several Convolutional Neural Network (CNN) models for the classification of hearing loss in patients using preprocessed auditory brainstem response (ABR) image data. Specifically, we employed six CNN architectures-VGG16, VGG19, DenseNet121, DenseNet-201, AlexNet, and InceptionV3-to differentiate between patients with hearing loss and those with normal hearing. A dataset comprising 7990 preprocessed ABR images was utilized to assess the performance and accuracy of these models. Each model was systematically tested to determine its capability to accurately classify hearing loss. A comparative analysis of the models focused on metrics of accuracy and computational efficiency. The results indicated that the AlexNet model exhibited superior performance, achieving an accuracy of 95.93%. The findings from this research suggest that deep learning models, particularly AlexNet in this instance, hold significant potential for automating the diagnosis of hearing loss using ABR graph data. Future work will aim to refine these models to enhance their diagnostic accuracy and efficiency, fostering their practical application in clinical settings.

2.
Diagnostics (Basel) ; 12(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453963

RESUMO

Chest X-ray radiographic (CXR) imagery enables earlier and easier lung disease diagnosis. Therefore, in this paper, we propose a deep learning method using a transfer learning technique to classify lung diseases on CXR images to improve the efficiency and accuracy of computer-aided diagnostic systems' (CADs') diagnostic performance. Our proposed method is a one-step, end-to-end learning, which means that raw CXR images are directly inputted into a deep learning model (EfficientNet v2-M) to extract their meaningful features in identifying disease categories. We experimented using our proposed method on three classes of normal, pneumonia, and pneumothorax of the U.S. National Institutes of Health (NIH) data set, and achieved validation performances of loss = 0.6933, accuracy = 82.15%, sensitivity = 81.40%, and specificity = 91.65%. We also experimented on the Cheonan Soonchunhyang University Hospital (SCH) data set on four classes of normal, pneumonia, pneumothorax, and tuberculosis, and achieved validation performances of loss = 0.7658, accuracy = 82.20%, sensitivity = 81.40%, and specificity = 94.48%; testing accuracy of normal, pneumonia, pneumothorax, and tuberculosis classes was 63.60%, 82.30%, 82.80%, and 89.90%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA