RESUMO
This study demonstrated the effect of differences in the exterior of erosion control dams (ECDs) on humans. We recruited 34 university students. Participants sat 1.4 m away from the display while wearing a device for measuring heart rate (HR) and heart rate variability. They (i) took a rest while viewing a gray screen for one minute; (ii) viewed a randomly displayed image of one of the three ECDs' images for one minute; (iii) filled out questionnaires (using the semantic differential method and a profile of mood states) for five minutes; and (iv) took a rest to wash out residual sensitivity for five minutes. The process was repeated three times with three different ECD images. No significant difference was found between the participants' HRs measured before and while viewing the images of the three ECDs with different exterior materials, although the HRs were significantly reduced when viewing the wood-attached ECD compared with the concrete-exposed ECD. Participants perceived the concrete-exposed and stone-attached ECDs artificially, while they felt the wood-attached ECD naturally. In addition, the vigor score was significantly increased while total mood disturbance was significantly decreased when viewing the wood-attached ECD. However, there were no significant differences in other indicators, and participants' responses to the exteriors of the ECDs were positive overall. Our findings show that people do not physiologically and psychologically perceive ECDs negatively. Therefore, securing stability against sedimentary disasters should be a priority before using the landscape elements of an ECD.
Assuntos
Frequência Cardíaca , Humanos , Masculino , Feminino , Frequência Cardíaca/fisiologia , Adulto Jovem , Adulto , Afeto/fisiologia , Inquéritos e Questionários , Conservação dos Recursos NaturaisRESUMO
In this study, a soft structure with its stiffness tunable by an external field is proposed. The proposed soft beam structure consists of a skin structure with channels filled with a magnetorheological fluid (MRF). Two specimens of the soft structure are fabricated by three-dimensional printing and fused deposition modeling. In the fabrication, a nozzle is used to obtain channels in the skin of the thermoplastic polyurethane, while another nozzle is used to fill MRF in the channels. The specimens are tested by using a universal tensile machine to evaluate the relationships between the load and deflection under two different conditions, without and with permanent magnets. It is empirically shown that the stiffness of the proposed soft structure can be altered by activating the magnetic field.
RESUMO
This study was designed to investigate functional recovery after the transplantation of mesenchymal stem cells (MSCs) or neurally differentiated MSCs (NMSCs) derived from bone marrow in a rat model of spinal cord injury (SCI). Sprague-Dawley rats were subjected to incomplete SCI using an NYU impactor to create a free drop contusion at the T9 level. The SCI rats were then classified into three groups; MSCs, NMSCs, and phosphate-buffered saline (PBS)-treated groups. The cells or PBS were administrated 1 week after SCI. Basso-Beattie-Bresnahan (BBB) locomotor rating scores were measured at 1-week intervals for 9 weeks. Somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) were also recorded 8 weeks after transplantation. While transplantation of MSCs led to a clear tendency of motor recovery, NMSC-treated rats had significantly improved BBB scores and showed significantly shortened initial latency, N1 latency, and P1 latency of the SSEPs compared to PBS controls. In addition, 5-bromo-2-deoxyuridine (BrdU)-prelabeled MSCs costained for BrdU and glial fibrillary acidic protein (GFAP) or myelin basic protein (MBP) were found rostrally and caudally 5 mm each from the epicenter of the necrotic cavity 4 weeks after transplantation. These results suggest that neurally differentiated cells might be an effective therapeutic source for functional recovery after SCI.
RESUMO
This study was designed to investigate functional recovery after the transplantation of mesenchymal stem cells (MSCs) or neurally differentiated MSCs (NMSCs) derived from bone marrow in a rat model of spinal cord injury (SCI). Sprague-Dawley rats were subjected to incomplete SCI using an NYU impactor to create a free drop contusion at the T9 level. The SCI rats were then classified into three groups; MSCs, NMSCs, and phosphate-buffered saline (PBS)-treated groups. The cells or PBS were administrated 1 week after SCI. Basso-Beattie-Bresnahan (BBB) locomotor rating scores were measured at 1-week intervals for 9 weeks. Somatosensory evoked potentials (SSEPs) and motor evoked potentials (MEPs) were also recorded 8 weeks after transplantation. While transplantation of MSCs led to a clear tendency of motor recovery, NMSC-treated rats had significantly improved BBB scores and showed significantly shortened initial latency, N1 latency, and P1 latency of the SSEPs compared to PBS controls. In addition, 5-bromo-2-deoxyuridine (BrdU)-prelabeled MSCs costained for BrdU and glial fibrillary acidic protein (GFAP) or myelin basic protein (MBP) were found rostrally and caudally 5 mm each from the epicenter of the necrotic cavity 4 weeks after transplantation. These results suggest that neurally differentiated cells might be an effective therapeutic source for functional recovery after SCI.
Assuntos
Células da Medula Óssea/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Traumatismos da Medula Espinal/terapia , Animais , Bromodesoxiuridina/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Atividade Motora , Proteína Básica da Mielina/metabolismo , Sistema Nervoso/citologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função FisiológicaRESUMO
OBJECTIVE: To evaluate the changes in cortical somatosensory-evoked potentials (SEPs) after botulinum toxin type A injection to determine what effect spasticity has on cortical SEPs. DESIGN: Intervention study and before-after trial. SETTING: University-affiliated hospital in Korea. PARTICIPANTS: Twelve children with spastic hemiplegic cerebral palsy (CP), 7 children with spastic diplegic CP, and 8 patients with traumatic brain injury. INTERVENTION: All participants had botulinum toxin type A injected into the muscles of the spastic limb. MAIN OUTCOME MEASURES: SEPs were recorded before and 7 days after the botulinum toxin type A injection. Spasticity of the affected spastic limb was also measured. The short latency and amplitude of waves in SEPs were measured. The SEP results were divided into 3 groups: flat (no evoked potential), abnormal (evoked but delayed in latency), and normal (clear waveform with normal latency). RESULTS: The normal response of cortical SEP increased after injection. The SEPs exhibited more frequent improvement in the limbs, with greater improvement of spasticity in grade (>1.0 grade) and in patients of younger age (<3y) after injection (P<.05). CONCLUSION: The observed improvement of cortical SEPs with associated reduction of spasticity that occurred after the botulinum toxin type A injection indicates that spasticity itself can be considered a factor affecting cortical SEPs.