Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(14): 7597-7605, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32226986

RESUMO

The long stagnation of the photo-conversion efficiency of kesterites below 13% is a source of frustration in the scientific community. In this study, we investigated the effects of sodium on the passivation of grain boundaries and defects in Cu2ZnSnSe4 (CZTSe) grown on a soda-lime glass (SLG) and borosilicate (BS) glass. Because BS glass does not inherently contain sodium, we placed a thin layer of NaF between CZTSe and Mo. The composition of the samples is Cu-poor and Zn-rich. The distribution of sodium and its contributions to phase formation and defects were examined by cross-sectional energy-dispersive X-ray profiling, Raman scattering spectroscopy and imaging, surface potential and photoluminescence. From the experimental results, it can be strongly claimed that sodium ions segregate predominantly near the grain boundaries and reduce CuZn-related defects. These local surface imaging analyses provided the exact locations of the secondary phases. In particular, the photo-assisted scanning probe method enabled us to observe the changes in the optoelectrical properties of the thin films and the carrier behavior within the materials. Further studies with distinct alkali ions and optimal processing conditions will pave a way to improve the performance of kesterite solar cells.

2.
Sci Rep ; 10(1): 3807, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123253

RESUMO

Manipulation of the heterointerfacial structure and/or chemistry of transition metal oxides is of great interest for the development of novel properties. However, few studies have focused on heterointerfacial effects on the growth characteristics of oxide thin films, although such interfacial engineering is crucial to determine the growth dynamics and physical properties of oxide heterostructures. Herein, we show that heterointerfacial effects play key roles in determining the growth process of oxide thin films by overcoming the simple epitaxial strain energy. Brownmillerite (SrFeO2.5; BM-SFO) thin films are epitaxially grown along the b-axis on both SrTiO3(001) and SrRuO3/SrTiO3(001) substrates, whereas growth along the a-axis is expected from conventional epitaxial strain effects originating from lattice mismatch with the substrates. Scanning transmission electron microscopy measurements and first principles calculations reveal that these peculiar growth characteristics of BM-SFO thin films originate from the heterointerfacial effects governed by their distinct interfacial structures. These include octahedral connectivity between dissimilar oxides containing different chemical species and a peculiar transition layer for BM-SFO/SrRuO3/SrTiO3(001) and BM-SFO/SrTiO3(001) heterostructures, respectively. These effects enable subtle control of the growth process of oxide thin films and could facilitate the fabrication of novel functional devices.

3.
Nat Mater ; 17(12): 1087-1094, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397313

RESUMO

Magnetic skyrmions are topologically protected whirling spin texture. Their nanoscale dimensions, topologically protected stability and solitonic nature, together are promising for future spintronics applications. To translate these compelling features into practical spintronic devices, a key challenge lies in achieving effective control of skyrmion properties, such as size, density and thermodynamic stability. Here, we report the discovery of ferroelectrically tunable skyrmions in ultrathin BaTiO3/SrRuO3 bilayer heterostructures. The ferroelectric proximity effect at the BaTiO3/SrRuO3 heterointerface triggers a sizeable Dzyaloshinskii-Moriya interaction, thus stabilizing robust skyrmions with diameters less than a hundred nanometres. Moreover, by manipulating the ferroelectric polarization of the BaTiO3 layer, we achieve local, switchable and nonvolatile control of both skyrmion density and thermodynamic stability. This ferroelectrically tunable skyrmion system can simultaneously enhance the integratability and addressability of skyrmion-based functional devices.

4.
Adv Mater ; 29(44)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29024168

RESUMO

Quantum mechanical tunneling of electrons across ultrathin insulating oxide barriers has been studied extensively for decades due to its great potential in electronic-device applications. In the few-nanometers-thick epitaxial oxide films, atomic-scale structural imperfections, such as the ubiquitously existed one-unit-cell-high terrace edges, can dramatically affect the tunneling probability and device performance. However, the underlying physics has not been investigated adequately. Here, taking ultrathin BaTiO3 films as a model system, an intrinsic tunneling-conductance enhancement is reported near the terrace edges. Scanning-probe-microscopy results demonstrate the existence of highly conductive regions (tens of nanometers wide) near the terrace edges. First-principles calculations suggest that the terrace-edge geometry can trigger an electronic reconstruction, which reduces the effective tunneling barrier width locally. Furthermore, such tunneling-conductance enhancement can be discovered in other transition metal oxides and controlled by surface-termination engineering. The controllable electronic reconstruction can facilitate the implementation of oxide electronic devices and discovery of exotic low-dimensional quantum phases.

5.
ACS Appl Mater Interfaces ; 9(32): 27305-27312, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28731326

RESUMO

With recent trends on miniaturizing oxide-based devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO-TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the PO2 to 5 mTorr, regardless of the total background gas pressure (Ptotal), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.

6.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28256752

RESUMO

The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO3 /BaTiO3 /SrRuO3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high PO2 (around 150 mTorr), usually exhibits a mixture of RuO2 -BaO and SrO-TiO2 terminations. By reducing PO2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA