Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
1.
JMIR Med Educ ; 10: e51282, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38989848

RESUMO

Background: Accurate medical advice is paramount in ensuring optimal patient care, and misinformation can lead to misguided decisions with potentially detrimental health outcomes. The emergence of large language models (LLMs) such as OpenAI's GPT-4 has spurred interest in their potential health care applications, particularly in automated medical consultation. Yet, rigorous investigations comparing their performance to human experts remain sparse. Objective: This study aims to compare the medical accuracy of GPT-4 with human experts in providing medical advice using real-world user-generated queries, with a specific focus on cardiology. It also sought to analyze the performance of GPT-4 and human experts in specific question categories, including drug or medication information and preliminary diagnoses. Methods: We collected 251 pairs of cardiology-specific questions from general users and answers from human experts via an internet portal. GPT-4 was tasked with generating responses to the same questions. Three independent cardiologists (SL, JHK, and JJC) evaluated the answers provided by both human experts and GPT-4. Using a computer interface, each evaluator compared the pairs and determined which answer was superior, and they quantitatively measured the clarity and complexity of the questions as well as the accuracy and appropriateness of the responses, applying a 3-tiered grading scale (low, medium, and high). Furthermore, a linguistic analysis was conducted to compare the length and vocabulary diversity of the responses using word count and type-token ratio. Results: GPT-4 and human experts displayed comparable efficacy in medical accuracy ("GPT-4 is better" at 132/251, 52.6% vs "Human expert is better" at 119/251, 47.4%). In accuracy level categorization, humans had more high-accuracy responses than GPT-4 (50/237, 21.1% vs 30/238, 12.6%) but also a greater proportion of low-accuracy responses (11/237, 4.6% vs 1/238, 0.4%; P=.001). GPT-4 responses were generally longer and used a less diverse vocabulary than those of human experts, potentially enhancing their comprehensibility for general users (sentence count: mean 10.9, SD 4.2 vs mean 5.9, SD 3.7; P<.001; type-token ratio: mean 0.69, SD 0.07 vs mean 0.79, SD 0.09; P<.001). Nevertheless, human experts outperformed GPT-4 in specific question categories, notably those related to drug or medication information and preliminary diagnoses. These findings highlight the limitations of GPT-4 in providing advice based on clinical experience. Conclusions: GPT-4 has shown promising potential in automated medical consultation, with comparable medical accuracy to human experts. However, challenges remain particularly in the realm of nuanced clinical judgment. Future improvements in LLMs may require the integration of specific clinical reasoning pathways and regulatory oversight for safe use. Further research is needed to understand the full potential of LLMs across various medical specialties and conditions.


Assuntos
Inteligência Artificial , Cardiologia , Humanos , Cardiologia/normas
2.
J Clin Med ; 13(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999268

RESUMO

Background/Objective: In patients with severe trauma, intraosseous (IO) access is an alternative when intravenous (IV) access proves challenging. However, detailed insights into its utilization patterns and effectiveness are lacking. This study aims to evaluate the use and efficacy of IO access in hemodynamically unstable patients with trauma at level-1 trauma centers in South Korea. Methods: Data from six centers over 12 months were analyzed, focusing on patients with traumatic cardiac arrest or shock. Overall, 206 patients were included in the study: 94 in the IO group and 112 in the IV group. Results: The first-attempt success rate was higher in the IO group than in the IV group (90.4% vs. 75.5%). The procedure time in the IO group was also shorter than that in the IV group. The fluid infusion rate was lower in the IO group than in the IV group; however, the use of a pressure bag with IO access significantly increased the rate, making it comparable to the IV infusion rate. Further, regarding IO access, a humeral site provided a higher infusion rate than a tibial site. Conclusions: IO access offers a viable alternative to IV access for the initial resuscitation in patients with trauma, providing advantages in terms of procedure time and first-attempt success rate. The use of a pressure bag and a humeral site for IO access afforded infusion rates comparable to those associated with IV access.

3.
Plant Dis ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956957

RESUMO

Kiwi (Actinidia chinesis) is an economically important fruit in Korea, with 1,300 ha cultivated and a production of approximately 25,000 tons per year (Kim and Koh, 2018; Kim and Choi, 2023). In late June 2020, fruit scab symptoms were observed on A. chinensis var. rufopulpa in an orchard in Suncheon, Korea. The incidence of scab symptoms among 20-year-old trees was over 75%, primarily superficial, but rendered the fruit less marketable. In the initial stages of the disease, small, light-brown, circular, and oval spots were formed. As the superficial spots expanded, they became cracked scabs measuring 1 to 7 cm with light edges at the later stages. To isolate the causal pathogen, two lesions were cut from two sections of symptomatic tissue, from each of seven fruits from seven trees. Lesions were surface-sterilized with 70% ethanol for 1 min and washed three times with sterilized distilled water (SDW). The sterilized pieces were placed on potato dextrose agar (PDA) and incubated in the dark at 25°C for one week. After subculturing on PDA, single-spore isolation produced 14 isolates: SYP-410 to 423). All 14 colonies appeared greyish-green and cottony on PDA after 7 d. Conidia were pale brown, ellipsoid to obclavate, with ornamented walls, 1 to 6 transverse and 0 to 3 vertical septa, and length × width of 21.5 to 53.4 × 7.3 to 19.2 µm (avg. 33.0 × 12.0 µm, n = 100). Their morphological characteristics were consistent with Alternaria spp. (van der Waals et al. 2011; Woudenberg et al. 2015). We randomly selected three isolates from the morphologically similar cultures and named them SYP-412 to 414 for further investigation. The ITS (GenBank accession nos.: OR901850 to 52), gapdh (OR924309 to 11), tef1 (OR924312 to 14), rpb2 (OR924315 to 17), Alt a1 (OR924318 to 20), endoPG (OR924321 to 23), and OPA10-2 (OR924324 to 26) sequences from SYP-412 to 414 had a 100% (515 bp/515 bp), 100% (578/578), 100% (240/240), 100% (724/724), 95.55% (451/472), 99.33% (445/448), and 100% (634/634) identity with that of type strain A. alternata CBS 918.96 (AF347032, AY278809, KC584693, KC584435, AY563302, KP124026, and KP124633), respectively. Results from the maximum likelihood phylogenetic analysis, based on the seven concatenated gene sequences, placed the representative isolates in a clade with A. alternata. Pathogenicity of SYP-412 was tested using 12 surface-sterilized two-month-old kiwifruits on a 20-year-old trees. Six kiwifruits were spray-inoculated with 5 mL of a conidial suspension (1 × 106 conidia/ml) generated after culturing in PDA medium for 7 d, with or without wounding. Another six control fruits were inoculated with SDW with and without wounding. The inoculated kiwifruits were enclosed in plastic bags to maintain high humidity for one day. Scab symptoms were observed in both wounded and unwounded fruits six weeks after inoculation, but not in the control. The pathogenicity test was performed on a total of three separate trees twice. To satisfy Koch's postulates, A. alternata was re-isolated from all the symptomatic tissues and confirmed by analyzing the ITS and rpb2 genes. Although scab disease caused by A. tenuissima (now A. alternata) has been previously reported in kiwifruit of A. chinensis var. rufopulpa in China (Woudenberg et al. 2015; Ma et al., 2019), this is the first report of its occurrence on kiwifruit in Korea and will help in future detection and control.

4.
Diagnostics (Basel) ; 14(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928652

RESUMO

Non-alcoholic fatty liver disease (NAFLD), prevalent among conditions like obesity and diabetes, is globally significant. Existing ultrasound diagnosis methods, despite their use, often lack accuracy and precision, necessitating innovative solutions like AI. This study aims to validate an AI-enhanced quantitative ultrasound (QUS) algorithm for NAFLD severity assessment and compare its performance with Magnetic Resonance Imaging Proton Density Fat Fraction (MRI-PDFF), a conventional diagnostic tool. A single-center cross-sectional pilot study was conducted. Liver fat content was estimated using an AI-enhanced quantitative ultrasound attenuation coefficient (QUS-AC) of Barreleye Inc. with an AI-based QUS algorithm and two conventional ultrasound techniques, FibroTouch Ultrasound Attenuation Parameter (UAP) and Canon Attenuation Imaging (ATI). The results were compared with MRI-PDFF values. The intraclass correlation coefficient (ICC) was also assessed. Significant correlation was found between the QUS-AC and the MRI-PDFF, reflected by an R value of 0.95. On other hand, ATI and UAP displayed lower correlations with MRI-PDFF, yielding R values of 0.73 and 0.51, respectively. In addition, ICC for QUS-AC was 0.983 for individual observations. On the other hand, the ICCs for ATI and UAP were 0.76 and 0.39, respectively. Our findings suggest that AC with AI-enhanced QUS could serve as a valuable tool for the non-invasive diagnosis of NAFLD.

5.
Nano Lett ; 24(26): 7979-7986, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829309

RESUMO

Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here we investigate the impact of dimensionality of epitaxially grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designing oxide superlattices with a correlated ferromagnetic SrRuO3 and nonmagnetic SrTiO3 layers, we observed modulated ferromagnetic behavior with the change of the SrRuO3 thickness. Especially, for three-unit-cell-thick layers, we observe a significant 1500% improvement of the coercive field in the anomalous Hall effect, which cannot be solely attributed to the dimensional crossover in ferromagnetism. The atomic-scale heterostructures further reveal the systematic modulation of anisotropy for the lattice structure and orbital hybridization, explaining the enhanced magnetic anisotropy. Our findings provide valuable insights into engineering the anisotropic hybridization of synthetic magnetic crystals, offering a tunable spin order for various applications.

6.
Int J Toxicol ; : 10915818241261631, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897632

RESUMO

The subchronic toxicity and toxicokinetics of a combination of rabeprazole sodium and sodium bicarbonate were investigated in dogs by daily oral administration for 13 consecutive weeks with a 4-week recovery period. The dose groups consisted of control (vehicles), (5 + 200), (10 + 400), and (20 + 800) mg/kg of rabeprazole sodium + sodium bicarbonate, 20 mg/kg of rabeprazole sodium only, and 800 mg/kg of sodium bicarbonate only. Esophageal ulceration accompanied by inflammation was observed in only one animal in the male (20 + 800) mg/kg rabeprazole sodium + sodium bicarbonate group. However, the severity of the ulceration was moderate, and the site of occurrence was focally extensive; thus, it was assumed to be a treatment-related effect of rabeprazole sodium + sodium bicarbonate. In the toxicokinetics component of this study, systemic exposure to rabeprazole sodium (AUClast and Cmax at Day 91) was greater in males than females, suggesting sex differences. AUClast and Cmax at Day 91 were increased compared to those on Day 1 in a dose-dependent manner. A delayed Tmax and no drug accumulation were observed after repeated dosage. In conclusion, we suggest under the conditions of this study that the no-observed-adverse-effect level (NOAEL) of the combination of rabeprazole sodium + sodium bicarbonate in male and female dogs is (10 + 400) and (20 + 800) mg/kg, respectively.

7.
ACS Appl Mater Interfaces ; 16(22): 28379-28390, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771721

RESUMO

This study proposes a titanium silicide (TiSi2) recombination layer for perovskite/tunnel oxide passivated contact (TOPCon) 2-T tandem solar cells as an alternative to conventional transparent conductive oxide (TCO)-based recombination layers. TiSi2 was formed while TiO2 was made by oxidizing a Ti film deposited on the p+-Si layer. The reaction formation mechanism was proposed based on the diffusion theory supported by experimental results. The optical and electrical properties of the TiSi2 layer were optimized by controlling the initial Ti thicknesses (5-100 nm). With the initial Ti of 50 nm, the lowest reflectance and highly ohmic contact between the TiO2 and p+-Si layers with a contact resistivity of 161.48 mΩ·cm2 were obtained. In contrast, the TCO interlayer shows Schottky behavior with much higher contact resistivities. As the recombination layer of TiSi2 and the electron transport layer of TiO2 are formed simultaneously, the process steps become simpler. Finally, the MAPbI3/TOPCon tandem device yielded an efficiency of 16.23%, marking the first reported efficiency for a device including a silicide-based interlayer.

8.
ACS Appl Mater Interfaces ; 16(21): 27532-27540, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743018

RESUMO

Robust ferroelectricity in HfO2-based ultrathin films has the potential to revolutionize nonvolatile memory applications in nanoscale electronic devices because of their compatibility with the existing Si technology. However, to fully exploit the potential of ferroelectric HfO2-based thin films, it is crucial to develop strategies for the controlled stabilization of various HfO2-based polymorphs in nanoscale heterostructures. This study demonstrates how substrate-orientation-induced anisotropic strain can engineer the crystal symmetry, structural domain morphology, and growth orientation of ultrathin Hf0.5Zr0.5O2 (HZO) films. Epitaxial ultrathin HZO films were grown on the heterostructures of (001)- and (110)-oriented La2/3Sr1/3MnO3/SrTiO3 (LSMO/STO) substrate. Various structural analyses revealed that the (110)-oriented substrate promotes a higher degree of structural order (crystallinity) with improved stability of the (111)-oriented orthorhombic phase (Pca21) of HZO. Conversely, the (001)-oriented substrate not only induces a distorted orthorhombic structure but also facilitates the partial stabilization of nonpolar phases. Electrical measurements revealed robust ferroelectric properties in epitaxial thin films without any wake-up effect, where the well-ordered crystal symmetry stabilized by STO(110) facilitated better ferroelectric characteristics. This study suggests that tuning the epitaxial growth of ferroelectric HZO through substrate orientation can improve the stability of the metastable ferroelectric orthorhombic phase and thereby offer a better understanding of device applications.

9.
Food Sci Biotechnol ; 33(7): 1615-1621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623421

RESUMO

ß-Glucan is an immunoenhancing agent whose biological activities are linked to molecular structure. On that basis, the polysaccharide can be physiochemically modified to produce valuable functional materials. This study investigated the physical properties and immunostimulatory activity of modified ß-glucan. Alkali-treated ß-glucan had a distinct shape and smaller particle size than untreated ß-glucan. The reduced particle size was conducive to the stability of the suspension because the ß-glucan appeared to be completely dissolved by this treatment, forming an amorphous mass. Furthermore, alkali treatment improved the immunostimulating activity of ß-glucan, whereas exposure of macrophages to heat-treated ß-glucan decreased their immune activity. ß-Glucan with reduced particle size by wet-grinding also displayed immunomodulatory activities. These results suggested that the particle size of ß-glucan is a key factor in ß-glucan-induced immune responses of macrophages. Thus, the modification of the ß-glucan particle size provides new opportunities for developing immunoenhancing nutraceuticals or pharmacological therapies in the future.

10.
Nat Nanotechnol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684806

RESUMO

Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor. A suspended GeSn cantilever nanobeam on a Si substrate is resonantly driven by radio-frequency waves. Electrically controlled mechanical oscillation induces elastic strain that periodically varies with time in the GeSn nanobeam, enabling actively tunable lasing emission at >2 µm wavelengths. By utilizing mechanical resonances in the radio frequency as a driving mechanism, this work presents wide-range mid-infrared tunable lasers with ultralow tuning power consumption.

11.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542264

RESUMO

The multifunctional carbon catabolite repression negative on TATA-box-less complex (CCR4-NOT) is a multi-subunit complex present in all eukaryotes, including fungi. This complex plays an essential role in gene expression; however, a functional study of the CCR4-NOT complex in the rice blast fungus Magnaporthe oryzae has not been conducted. Seven genes encoding the putative CCR4-NOT complex were identified in the M. oryzae genome. Among these, a homologous gene, MoNOT3, was overexpressed during appressorium development in a previous study. Deletion of MoNOT3 in M. oryzae resulted in a significant reduction in hyphal growth, conidiation, abnormal septation in conidia, conidial germination, and appressorium formation compared to the wild-type. Transcriptional analyses suggest that the MoNOT3 gene affects conidiation and conidial morphology by regulating COS1 and COM1 in M. oryzae. Furthermore, Δmonot3 exhibited a lack of pathogenicity, both with and without wounding, which is attributable to deficiencies in the development of invasive growth in planta. This result was also observed in onion epidermal cells, which are non-host plants. In addition, the MoNOT3 gene was involved in cell wall stress responses and heat shock. Taken together, these observations suggest that the MoNOT3 gene is required for fungal infection-related cell development and stress responses in M. oryzae.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/metabolismo , Esporos Fúngicos , Oryza/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
12.
Adv Sci (Weinh) ; 11(18): e2305852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38476050

RESUMO

Herein, a novel extracellular matrix (ECM) hydrogel is proposed fabricated solely from decellularized, human fibroblast-derived matrix (FDM) toward advanced wound healing. This FDM-gel is physically very stable and viscoelastic, while preserving the natural ECM diversity and various bioactive factors. Subcutaneously transplanted FDM-gel provided a permissive environment for innate immune cells infiltration. Compared to collagen hydrogel, excellent wound healing indications of FDM-gel treated in the full-thickness wounds are noticed, particularly hair follicle formation via highly upregulated ß-catenin. Sequential analysis of the regenerated wound tissues disclosed that FDM-gel significantly alleviated pro-inflammatory cytokine and promoted M2-like macrophages, along with significantly elevated vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) level. A mechanistic study demonstrated that macrophages-FDM interactions through cell surface integrins α5ß1 and α1ß1 resulted in significant production of VEGF and bFGF, increased Akt phosphorylation, and upregulated matrix metalloproteinase-9 activity. Interestingly, blocking such interactions using specific inhibitors (ATN161 for α5ß1 and obtustatin for α1ß1) negatively affected those pro-healing growth factors secretion. Macrophages depletion animal model significantly attenuated the healing effect of FDM-gel. This study demonstrates that the FDM-gel is an excellent immunomodulatory material that is permissive for host cells infiltration, resorbable with time, and interactive with macrophages, where it thus enables regenerative matrix remodeling toward a complete wound healing.


Assuntos
Matriz Extracelular , Fibroblastos , Hidrogéis , Macrófagos , Cicatrização , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Cicatrização/efeitos dos fármacos , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Matriz Extracelular/metabolismo , Camundongos , Modelos Animais de Doenças , Masculino
13.
Biochem Biophys Res Commun ; 704: 149700, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401304

RESUMO

Every year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi. Among these peptides, WIK-14, which is composed of a 14-mer with tryptophan sequences at the amino terminus, showed the best antifungal activity via transient pore formation and ROS generation. In addition, the in vivo antifungal effects of WIK-14 were investigated in a mouse model infected with drug-resistant Candida albicans. The results demonstrate the potential of AMPs as antifungal agents.


Assuntos
Antifúngicos , Triptofano , Camundongos , Animais , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Triptofano/química , Lisina/química , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Aminoácidos/farmacologia , Candida albicans , Arginina/química , Testes de Sensibilidade Microbiana
14.
Plant Physiol Biochem ; 207: 108415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324955

RESUMO

Salinization of land is globally increasing due to climate change, and salinity stress is an important abiotic stressor that adversely affects agricultural productivity. In this study, we assessed a halotolerant endophytic bacterium, Pseudoxanthomonas sp. JBR18, for its potential as a plant growth-promoting agent with multiple beneficial properties. The strain exhibited tolerance to sodium chloride concentration of up to 7.5 % in the R2A medium. In vitro evaluation revealed that strain JBR18 possessed proteolytic, protease (EC 3.4), and cellulase (EC 3.2.1.4) activities, as well as the ability to produce indole-acetic acid, proline, and exopolysaccharides. Compared with the controls, co-cultivation of Arabidopsis seedlings with the strain JBR18 improved plant growth, rosette size, shoot and root fresh weight, and chlorophyll content under salinity stress. Moreover, JBR18-inoculated seedlings showed lower levels of malondialdehyde, reactive oxygen species, and Na+ uptake into plant cells under salt stress but higher levels of K+. Additionally, seedlings inoculated with JBR18 exhibited a delayed response time and quantity of salt-responsive genes RD29A, RD29B, RD20, RD22, and KIN1 under salt stress. These multiple effects suggest that Pseudoxanthomonas sp. JBR18 is a promising candidate for mitigating the negative impacts of salinity stress on plant growth. Our findings may assist in future efforts to develop eco-friendly strategies for managing abiotic stress and enhancing plant tolerance to salt stress.


Assuntos
Arabidopsis , Plântula , Plântula/fisiologia , Arabidopsis/genética , Tolerância ao Sal , Bactérias , Estresse Fisiológico/genética
15.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396457

RESUMO

Traditional B-mode ultrasound has difficulties distinguishing benign from malignant breast lesions. It appears that Quantitative Ultrasound (QUS) may offer advantages. We examined the QUS imaging system's potential, utilizing parameters like Attenuation Coefficient (AC), Speed of Sound (SoS), Effective Scatterer Diameter (ESD), and Effective Scatterer Concentration (ESC) to enhance diagnostic accuracy. B-mode images and radiofrequency signals were gathered from breast lesions. These parameters were processed and analyzed by a QUS system trained on a simulated acoustic dataset and equipped with an encoder-decoder structure. Fifty-seven patients were enrolled over six months. Biopsies served as the diagnostic ground truth. AC, SoS, and ESD showed significant differences between benign and malignant lesions (p < 0.05), but ESC did not. A logistic regression model was developed, demonstrating an area under the receiver operating characteristic curve of 0.90 (95% CI: 0.78, 0.96) for distinguishing between benign and malignant lesions. In conclusion, the QUS system shows promise in enhancing diagnostic accuracy by leveraging AC, SoS, and ESD. Further studies are needed to validate these findings and optimize the system for clinical use.

16.
Nat Commun ; 15(1): 1180, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332134

RESUMO

Charge ordering (CO), characterized by a periodic modulation of electron density and lattice distortion, has been a fundamental topic in condensed matter physics, serving as a potential platform for inducing novel functional properties. The charge-ordered phase is known to occur in a doped system with high d-electron occupancy, rather than low occupancy. Here, we report the realization of the charge-ordered phase in electron-doped (100) SrTiO3 epitaxial thin films that have the lowest d-electron occupancy i.e., d1-d0. Theoretical calculation predicts the presence of a metastable CO state in the bulk state of electron-doped SrTiO3. Atomic scale analysis reveals that (100) surface distortion favors electron-lattice coupling for the charge-ordered state, and triggering the stabilization of the CO phase from a correlated metal state. This stabilization extends up to six unit cells from the top surface to the interior. Our approach offers an insight into the means of stabilizing a new phase of matter, extending CO phase to the lowest electron occupancy and encompassing a wide range of 3d transition metal oxides.

17.
Small ; 20(25): e2309851, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38214690

RESUMO

Emulating synaptic functionalities in optoelectronic devices is significant in developing artificial visual-perception systems and neuromorphic photonic computing. Persistent photoconductivity (PPC) in metal oxides provides a facile way to realize the optoelectronic synaptic devices, but the PPC performance is often limited due to the oxygen vacancy defects that release excess conduction electrons without external stimuli. Herein, a high-performance optoelectronic synapse based on the stoichiometry-controlled LaAlO3/SrTiO3 (LAO/STO) heterostructure is developed. By increasing La/Al ratio up to 1.057:1, the PPC is effectively enhanced but suppressed the background conductivity at the LAO/STO interface, achieving strong synaptic behaviors. The spectral noise analyses reveal that the synaptic behaviors are attributed to the cation-related point defects and their charge compensation mechanism near the LAO/STO interface. The short-term and long-term plasticity is demonstrated, including the paired-pulse facilitation, in the La-rich LAO/STO device upon exposure to UV light pulses. As proof of concepts, two essential synaptic functionalities, the pulse-number-dependent plasticity and the self-noise cancellation, are emulated using the 5 × 5 array of La-rich LAO/STO synapses. Beyond the typical oxygen deficiency control, the results show how harnessing the cation stoichiometry can be used to design oxide heterostructures for advanced optoelectronic synapses and neuromorphic applications.

18.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257684

RESUMO

This paper provides a comprehensive overview of the security vulnerability known as rowhammer in Dynamic Random-Access Memory (DRAM). While DRAM offers many desirable advantages, including low latency, high density, and cost-effectiveness, rowhammer vulnerability, first identified in 2014, poses a significant threat to computing systems. Rowhammer attacks involve repetitive access to specific DRAM rows, which can cause bit flips in neighboring rows, potentially compromising system credentials, integrity, and availability. The paper discusses the various stages of rowhammer attacks, explores existing attack techniques, and examines defense strategies. It also emphasizes the importance of understanding DRAM organization and the associated security challenges.

19.
Cell Rep Med ; 5(1): 101362, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232693

RESUMO

Repeated pandemics caused by the influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV) have resulted in serious problems in global public health, emphasizing the need for broad-spectrum antiviral therapeutics against respiratory virus infections. Here, we show the protective effects of long-acting recombinant human interleukin-7 fused with hybrid Fc (rhIL-7-hyFc) against major respiratory viruses, including influenza virus, SARS-CoV-2, and respiratory syncytial virus. Administration of rhIL-7-hyFc in a therapeutic or prophylactic regimen induces substantial antiviral effects. During an influenza A virus (IAV) infection, rhIL-7-hyFc treatment increases pulmonary T cells composed of blood-derived interferon γ (IFNγ)+ conventional T cells and locally expanded IL-17A+ innate-like T cells. Single-cell RNA transcriptomics reveals that rhIL-7-hyFc upregulates antiviral genes in pulmonary T cells and induces clonal expansion of type 17 innate-like T cells. rhIL-7-hyFc-mediated disease prevention is dependent on IL-17A in both IAV- and SARS-CoV-2-infected mice. Collectively, we suggest that rhIL-7-hyFc can be used as a broadly active therapeutic for future respiratory virus pandemic.


Assuntos
Influenza Humana , Interleucina-17 , Animais , Camundongos , Humanos , Interleucina-17/genética , Interleucina-7 , Linfócitos T , SARS-CoV-2 , Influenza Humana/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
20.
Adv Mater ; 36(5): e2305353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37594405

RESUMO

Metal-insulator transition (MIT) coupled with an ultrafast, significant, and reversible resistive change in Mott insulators has attracted tremendous interest for investigation into next-generation electronic and optoelectronic devices, as well as a fundamental understanding of condensed matter systems. Although the mechanism of MIT in Mott insulators is still controversial, great efforts have been made to understand and modulate MIT behavior for various electronic and optoelectronic applications. In this review, recent progress in the field of nanoelectronics utilizing MIT is highlighted. A brief introduction to the physics of MIT and its underlying mechanisms is begun. After discussing the MIT behaviors of various Mott insulators, recent advances in the design and fabrication of nanoelectronics devices based on MIT, including memories, gas sensors, photodetectors, logic circuits, and artificial neural networks are described. Finally, an outlook on the development and future applications of nanoelectronics utilizing MIT is provided. This review can serve as an overview and a comprehensive understanding of the design of MIT-based nanoelectronics for future electronic and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA