Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Commun ; 7: 11906, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27350604

RESUMO

Biomarkers are rapidly gaining importance in personalized medicine. Although numerous molecular signatures have been developed over the past decade, there is a lack of overlap and many biomarkers fail to validate in independent patient cohorts and hence are not useful for clinical application. For these reasons, identification of novel and robust biomarkers remains a formidable challenge. We combine targeted proteomics with computational biology to discover robust proteomic signatures for prostate cancer. Quantitative proteomics conducted in expressed prostatic secretions from men with extraprostatic and organ-confined prostate cancers identified 133 differentially expressed proteins. Using synthetic peptides, we evaluate them by targeted proteomics in a 74-patient cohort of expressed prostatic secretions in urine. We quantify a panel of 34 candidates in an independent 207-patient cohort. We apply machine-learning approaches to develop clinical predictive models for prostate cancer diagnosis and prognosis. Our results demonstrate that computationally guided proteomics can discover highly accurate non-invasive biomarkers.


Assuntos
Biomarcadores/urina , Neoplasias da Próstata/urina , Humanos , Biópsia Líquida , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Próstata/patologia , Neoplasias da Próstata/patologia , Proteoma , Proteômica
2.
PLoS One ; 11(4): e0154074, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27128972

RESUMO

Renal cell carcinoma comprises 2 to 3% of malignancies in adults with the most prevalent subtype being clear-cell RCC (ccRCC). This type of cancer is well characterized at the genomic and transcriptomic level and is associated with a loss of VHL that results in stabilization of HIF1. The current study focused on evaluating ccRCC stage dependent changes at the proteome level to provide insight into the molecular pathogenesis of ccRCC progression. To accomplish this, label-free proteomics was used to characterize matched tumor and normal-adjacent tissues from 84 patients with stage I to IV ccRCC. Using pooled samples 1551 proteins were identified, of which 290 were differentially abundant, while 783 proteins were identified using individual samples, with 344 being differentially abundant. These 344 differentially abundant proteins were enriched in metabolic pathways and further examination revealed metabolic dysfunction consistent with the Warburg effect. Additionally, the protein data indicated activation of ESRRA and ESRRG, and HIF1A, as well as inhibition of FOXA1, MAPK1 and WISP2. A subset analysis of complementary gene expression array data on 47 pairs of these same tissues indicated similar upstream changes, such as increased HIF1A activation with stage, though ESRRA and ESRRG activation and FOXA1 inhibition were not predicted from the transcriptomic data. The activation of ESRRA and ESRRG implied that HIF2A may also be activated during later stages of ccRCC, which was confirmed in the transcriptional analysis. This combined analysis highlights the importance of HIF1A and HIF2A in developing the ccRCC molecular phenotype as well as the potential involvement of ESRRA and ESRRG in driving these changes. In addition, cofilin-1, profilin-1, nicotinamide N-methyltransferase, and fructose-bisphosphate aldolase A were identified as candidate markers of late stage ccRCC. Utilization of data collected from heterogeneous biological domains strengthened the findings from each domain, demonstrating the complementary nature of such an analysis. Together these results highlight the importance of the VHL/HIF1A/HIF2A axis and provide a foundation and therapeutic targets for future studies. (Data are available via ProteomeXchange with identifier PXD003271 and MassIVE with identifier MSV000079511.).


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Rim/patologia , Transdução de Sinais , Transcriptoma , Idoso , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas/genética , Proteínas/metabolismo , Proteômica
3.
Elife ; 4: e09103, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26135027

RESUMO

Advances in mass spectrometry-based proteomics have allowed researchers to quantify the abundances of the different forms of three closely related proteins in the neurons of mice.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Neurônios/química , Isoformas de Proteínas/química , Animais
4.
Genome Med ; 5(6): 56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23809668

RESUMO

The ability to distinguish indolent from aggressive prostate tumors remains one of the greatest challenges in the management of this disease. Ongoing efforts to establish a panel of molecular signatures, comprising gene expression profiles, proteins, epigenetic patterns, or a combination of these alterations, are being propelled by rapid advancements in 'omics' technologies. The identification of such biomarkers in biological fluids is an especially attractive goal for clinical applications. Here, we summarize recent progress in the identification of candidate prognostic biomarkers of prostate cancer using biological fluid samples.

5.
Proteomics ; 13(10-11): 1667-1671, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23533145

RESUMO

Expressed prostatic secretions (EPS) are proximal fluids of the prostate that are increasingly being utilized as a clinical source for diagnostic and prognostic assays for prostate cancer (PCa). These fluids contain an abundant amount of microvesicles reflecting the secretory function of the prostate gland, and their protein composition remains poorly defined in relation to PCa. Using expressed prostatic secretions in urine (EPS-urine), exosome preparations were characterized by a shotgun proteomics procedure. In pooled EPS-urine exosome samples, ~900 proteins were detected. Many of these have not been previously observed in the soluble proteome of EPS generated by our labs or other related exosome proteomes. We performed systematic comparisons of our data against previously published, prostate-related proteomes, and global annotation analyses to highlight functional processes within the proteome of EPS-urine derived exosomes. The acquired proteomic data have been deposited to the Tranche repository and will lay the foundation for more extensive investigations of PCa derived exosomes in the context of biomarker discovery and cancer biology.


Assuntos
Exossomos/metabolismo , Neoplasias da Próstata/metabolismo , Proteoma/metabolismo , Estudos de Casos e Controles , Humanos , Masculino , Neoplasias da Próstata/urina , Proteinúria/urina , Proteoma/isolamento & purificação
6.
Mol Cell Proteomics ; 11(12): 1870-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986220

RESUMO

Current protocols for the screening of prostate cancer cannot accurately discriminate clinically indolent tumors from more aggressive ones. One reliable indicator of outcome has been the determination of organ-confined versus nonorgan-confined disease but even this determination is often only made following prostatectomy. This underscores the need to explore alternate avenues to enhance outcome prediction of prostate cancer patients. Fluids that are proximal to the prostate, such as expressed prostatic secretions (EPS), are attractive sources of potential prostate cancer biomarkers as these fluids likely bathe the tumor. Direct-EPS samples from 16 individuals with extracapsular (n = 8) or organ-confined (n = 8) prostate cancer were used as a discovery cohort, and were analyzed in duplicate by a nine-step MudPIT on a LTQ-Orbitrap XL mass spectrometer. A total of 624 unique proteins were identified by at least two unique peptides with a 0.2% false discovery rate. A semiquantitative spectral counting algorithm identified 133 significantly differentially expressed proteins in the discovery cohort. Integrative data mining prioritized 14 candidates, including two known prostate cancer biomarkers: prostate-specific antigen and prostatic acid phosphatase, which were significantly elevated in the direct-EPS from the organ-confined cancer group. These and five other candidates (SFN, MME, PARK7, TIMP1, and TGM4) were verified by Western blotting in an independent set of direct-EPS from patients with biochemically recurrent disease (n = 5) versus patients with no evidence of recurrence upon follow-up (n = 10). Lastly, we performed proof-of-concept SRM-MS-based relative quantification of the five candidates using unpurified heavy isotope-labeled synthetic peptides spiked into pools of EPS-urines from men with extracapsular and organ-confined prostate tumors. This study represents the first efforts to define the direct-EPS proteome from two major subclasses of prostate cancer using shotgun proteomics and verification in EPS-urine by SRM-MS.


Assuntos
Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Secretadas pela Próstata/análise , Proteínas Secretadas pela Próstata/urina , Proteínas 14-3-3/análise , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Exonucleases/análise , Exorribonucleases , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Marcação por Isótopo , Masculino , Proteínas Oncogênicas/análise , Antígeno Prostático Específico/metabolismo , Análise Serial de Proteínas , Proteína Desglicase DJ-1 , Proteoma/análise , Inibidor Tecidual de Metaloproteinase-1/análise , Transglutaminases/análise
7.
J Proteome Res ; 11(4): 2386-96, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22339264

RESUMO

Urinary expressed prostatic secretion or "EPS-urine" is proximal tissue fluid that is collected after a digital rectal exam (DRE). EPS-urine is a rich source of prostate-derived proteins that can be used for biomarker discovery for prostate cancer (PCa) and other prostatic diseases. We previously conducted a comprehensive proteome analysis of direct expressed prostatic secretions (EPS). In the current study, we defined the proteome of EPS-urine employing Multidimensional Protein Identification Technology (MudPIT) and providing a comprehensive catalogue of this body fluid for future biomarker studies. We identified 1022 unique proteins in a heterogeneous cohort of 11 EPS-urines derived from biopsy negative noncancer diagnoses with some benign prostatic diseases (BPH) and low-grade PCa, representative of secreted prostate and immune system-derived proteins in a urine background. We further applied MudPIT-based proteomics to generate and compare the differential proteome from a subset of pooled urines (pre-DRE) and EPS-urines (post-DRE) from noncancer and PCa patients. The direct proteomic comparison of these highly controlled patient sample pools enabled us to define a list of prostate-enriched proteins detectable in EPS-urine and distinguishable from a complex urine protein background. A combinatorial analysis of both proteomics data sets and systematic integration with publicly available proteomics data of related body fluids, human tissue transcriptomic data, and immunohistochemistry images from the Human Protein Atlas database allowed us to demarcate a robust panel of 49 prostate-derived proteins in EPS-urine. Finally, we validated the expression of seven of these proteins using Western blotting, supporting the likelihood that they originate from the prostate. The definition of these prostatic proteins in EPS-urine samples provides a reference for future investigations for prostatic-disease biomarker studies.


Assuntos
Próstata/química , Proteínas Secretadas pela Próstata/urina , Proteoma/análise , Proteômica/métodos , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Humanos , Masculino , Espectrometria de Massas , Próstata/metabolismo , Doenças Prostáticas/metabolismo , Doenças Prostáticas/urina , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/urina , Proteínas Secretadas pela Próstata/química , Proteínas Secretadas pela Próstata/metabolismo , Proteoma/metabolismo , Reprodutibilidade dos Testes
8.
BMC Vet Res ; 7: 51, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21884610

RESUMO

BACKGROUND: Staphylococcus aureus is one of the most prevalent pathogens to cause mastitis in dairy cattle. Intramammary infection of dairy cows with S. aureus is often subclinical, due to the pathogen's ability to evade the innate defense mechanisms, but this can lead to chronic infection. A sub-population of S. aureus, known as small colony variant (SCV), displays atypical phenotypic characteristics, causes persistent infections, and is more resistant to antibiotics than parent strains. Therefore, it was hypothesized that the host immune response will be different for SCV than its parental or typical strains of S. aureus. In this study, the local and systemic immune protein responses to intramammary infection with three strains of S. aureus, including a naturally occurring bovine SCV strain (SCV Heba3231), were characterized. Serum and casein-depleted milk cytokine levels (interleukin-8, interferon-γ, and transforming growth factor-ß1), as well as serum haptoglobin concentrations were monitored over time after intramammary infection with each of the three S. aureus strains. Furthermore, comparative proteomics was used to evaluate milk proteome profiles during acute and chronic phases of S. aureus intramammary infection. RESULTS: Serum IL-8, IFN-γ, and TGF-ß1 responses differed in dairy cows challenged with different strains of S. aureus. Changes in overall serum haptoglobin concentrations were observed for each S. aureus challenge group, but there were no significant differences observed between groups. In casein-depleted milk, strain-specific differences in the host IFN-γ response were observed, but inducible IL-8 and TGF-ß1 concentrations were not different between groups. Proteomic analysis of the milk following intramammary infection revealed unique host protein expression profiles that were dependent on the infecting strain as well as phase of infection. Notably, the protein, component-3 of the proteose peptone (CPP3), was differentially expressed between the S. aureus treatment groups, implicating it as a potential antimicrobial peptide involved in host defense against S. aureus intramammary infection. CONCLUSIONS: Intramammary infection of dairy cattle with S. aureus causes an up-regulation of serum and milk immune-related proteins, and these responses vary depending on the infecting strain.


Assuntos
Mastite Bovina/microbiologia , Leite/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/imunologia , Regulação para Cima/imunologia , Animais , Área Sob a Curva , Bovinos , Feminino , Haptoglobinas/análise , Interferon gama/sangue , Interleucina-8/sangue , Mastite Bovina/sangue , Mastite Bovina/imunologia , Leite/imunologia , Proteômica/métodos , Infecções Estafilocócicas/sangue , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Fator de Crescimento Transformador beta/sangue
9.
Methods Mol Biol ; 748: 227-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21701978

RESUMO

Chaney and Jacobson first introduced the colloidal silica-bead protocol for the coating of cellular plasma membranes in the early 1980s. Since then, this method has been successfully incorporated into a wide range of in vitro and in vivo applications for the isolation of cell-surface proteins. The principle is simple - cationic colloidal silica microbeads are introduced to a suspension or monolayer of cells in culture. Electrostatic interactions between the beads and the negatively charged plasma membrane, followed by cross-linking to the membrane with an anionic polymer, ensure attachment and maintain the native protein conformation. Cells are subsequently ruptured, and segregation of the resulting plasma membrane sheets from the remaining- cell constituents is achieved by ultracentrifugation through density gradients. The resulting membrane-bead pellet is treated with various detergents or chaotropic agents (i.e., urea) to elute bound proteins. If proteomic profiling by mass spectrometry is desired, proteins are denatured, carbamidomethylated, and digested into peptides prior to chromatography.


Assuntos
Espectrometria de Massas/métodos , Proteínas de Membrana/isolamento & purificação , Microesferas , Proteômica/métodos , Dióxido de Silício , Animais , Membrana Celular/metabolismo , Humanos
10.
J Proteome Res ; 9(5): 2109-16, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20334419

RESUMO

It is expected that clinically obtainable fluids that are proximal to organs contain a repertoire of secreted proteins and shed cells reflective of the physiological state of that tissue and thus represent potential sources for biomarker discovery, investigation of tissue-specific biology, and assay development. The prostate gland secretes many proteins into a prostatic fluid that combines with seminal vesicle fluids to promote sperm activation and function. Proximal fluids of the prostate that can be collected clinically are seminal plasma and expressed prostatic secretion (EPS) fluids. In the current study, MudPIT-based proteomics was applied to EPS obtained from nine men with prostate cancer and resulted in the confident identification of 916 unique proteins. Systematic bioinformatics analyses using publicly available microarray data of 21 human tissues (Human Gene Atlas), the Human Protein Atlas database, and other published proteomics data of shed/secreted proteins were performed to systematically analyze this comprehensive proteome. Therefore, we believe this data will be a valuable resource for the research community to study prostate biology and potentially assist in the identification of novel prostate cancer biomarkers. To further streamline this process, the entire data set was deposited to the Tranche repository for use by other researchers.


Assuntos
Biomarcadores Tumorais/metabolismo , Mineração de Dados/métodos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Análise por Conglomerados , Bases de Dados de Proteínas , Humanos , Imuno-Histoquímica , Masculino , Proteínas Secretadas pela Próstata/análise , Proteínas Secretadas pela Próstata/metabolismo , Análise Serial de Proteínas , Proteoma/análise
11.
Expert Rev Proteomics ; 7(1): 141-54, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20121483

RESUMO

Defining the cell surface proteome has profound importance for understanding cell differentiation and cell-cell interactions, as well as numerous pathogenic abnormalities. Owing to their hydrophobic nature, plasma membrane proteins that reside on the cell surface pose analytical challenges and, despite efforts to overcome difficulties, remain under-represented in proteomic studies. Limitations in the classically employed ultracentrifugation-based approaches have led to the invention of more elaborate techniques for the purification of cell surface proteins. Three of these methods--cell surface coating with cationic colloidal silica beads, biotinylation and chemical capture of surface glycoproteins--allow for marked enrichment of this subcellular proteome, with each approach offering unique advantages and characteristics for different experiments. In this article, we introduce the principles of each purification method and discuss applications from the recent literature.


Assuntos
Proteínas de Membrana/isolamento & purificação , Proteômica/métodos , Humanos , Espectrometria de Massas/métodos , Glicoproteínas de Membrana/isolamento & purificação , Proteínas de Membrana/análise , Métodos , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA