Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Methods ; 21(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049699

RESUMO

Gene expression programs result from the collective activity of numerous regulatory factors. Studying their cooperative mode of action is imperative to understand gene regulation, but simultaneously measuring these factors within one sample has been challenging. Here we introduce Multiplexing Antibodies by barcode Identification (MAbID), a method for combinatorial genomic profiling of histone modifications and chromatin-binding proteins. MAbID employs antibody-DNA conjugates to integrate barcodes at the genomic location of the epitope, enabling combined incubation of multiple antibodies to reveal the distributions of many epigenetic markers simultaneously. We used MAbID to profile major chromatin types and multiplexed measurements without loss of individual data quality. Moreover, we obtained joint measurements of six epitopes in single cells of mouse bone marrow and during mouse in vitro differentiation, capturing associated changes in multifactorial chromatin states. Thus, MAbID holds the potential to gain unique insights into the interplay between gene regulatory mechanisms, especially for low-input samples and in single cells.


Assuntos
Cromatina , Histonas , Camundongos , Animais , Cromatina/genética , Histonas/metabolismo , Imunoprecipitação da Cromatina/métodos , Código das Histonas , Processamento de Proteína Pós-Traducional , Epigênese Genética
2.
Cell Rep ; 42(4): 112248, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37059092

RESUMO

During the early stages of mammalian development, the epigenetic state of the parental genome is completely reprogrammed to give rise to the totipotent embryo. An important aspect of this remodeling concerns the heterochromatin and the spatial organization of the genome. While heterochromatin and genome organization are intricately linked in pluripotent and somatic systems, little is known about their relationship in the totipotent embryo. In this review, we summarize the current knowledge on the reprogramming of both regulatory layers. In addition, we discuss available evidence on their relationship and put this in the context of findings in other systems.


Assuntos
Desenvolvimento Embrionário , Heterocromatina , Animais , Heterocromatina/genética , Desenvolvimento Embrionário/genética , Embrião de Mamíferos , Mamíferos/genética , Genoma , Epigênese Genética
3.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993866

RESUMO

Embryogenesis is supported by dynamic loops of cellular interactions. Here, we create a partial mouse embryo model to elucidate the principles of epiblast (Epi) and extra-embryonic endoderm co-development (XEn). We trigger naive mouse embryonic stem cells to form a blastocyst-stage niche of Epi-like cells and XEn-like cells (3D, hydrogel free and serum free). Once established, these two lineages autonomously progress in minimal medium to form an inner pro-amniotic-like cavity surrounded by polarized Epi-like cells covered with visceral endoderm (VE)-like cells. The progression occurs through reciprocal inductions by which the Epi supports the primitive endoderm (PrE) to produce a basal lamina that subsequently regulates Epi polarization and/or cavitation, which, in return, channels the transcriptomic progression to VE. This VE then contributes to Epi bifurcation into anterior- and posterior-like states. Similarly, boosting the formation of PrE-like cells within blastoids supports developmental progression. We argue that self-organization can arise from lineage bifurcation followed by a pendulum of induction that propagates over time.


Assuntos
Endoderma , Camadas Germinativas , Animais , Blastocisto , Diferenciação Celular , Linhagem da Célula/fisiologia , Implantação do Embrião , Embrião de Mamíferos , Camundongos
4.
Methods Mol Biol ; 2532: 215-241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867252

RESUMO

Spatial genome organization is considered to play an important role in mammalian cells, by guiding gene expression programs and supporting lineage specification. Yet it is still an outstanding question in the field what the direct impact of spatial genome organization on gene expression is. To elucidate this relationship further, we have recently developed scDam&T-seq, a method that simultaneously quantifies protein-DNA interactions and transcriptomes in single cells. This method efficiently combines two preexisting methods: DamID for measuring protein-DNA contacts and CEL-Seq2 for quantification of the transcriptome in single cells. scDam&T-seq has been successfully applied to measure DNA contacts with the nuclear lamina, while at the same time revealing the effect of these contacts on gene expression. This method is applicable to many different proteins of interest and can thereby aid in studying the relationship between protein-DNA interactions and gene expression in single cells.


Assuntos
Genoma , Transcriptoma , Animais , DNA/genética , Mamíferos/genética , Proteínas/genética , Análise de Célula Única/métodos
5.
Nature ; 607(7919): 604-609, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831506

RESUMO

Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.


Assuntos
Aneuploidia , Posicionamento Cromossômico , Segregação de Cromossomos , Cromossomos , Proteína 9 Associada à CRISPR , Linhagem Celular , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Cromossomos/genética , Cromossomos/metabolismo , Cromotripsia , Crescimento e Desenvolvimento/genética , Humanos , Interfase , Micronúcleos com Defeito Cromossômico , Mitose , Neoplasias/genética , Neoplasias/patologia , Organoides/citologia , Organoides/metabolismo , Análise de Sequência de DNA , Análise de Célula Única
6.
Mol Cell ; 82(10): 1956-1970.e14, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35366395

RESUMO

Recent advances in single-cell sequencing technologies have enabled simultaneous measurement of multiple cellular modalities, but the combined detection of histone post-translational modifications and transcription at single-cell resolution has remained limited. Here, we introduce EpiDamID, an experimental approach to target a diverse set of chromatin types by leveraging the binding specificities of single-chain variable fragment antibodies, engineered chromatin reader domains, and endogenous chromatin-binding proteins. Using these, we render the DamID technology compatible with the genome-wide identification of histone post-translational modifications. Importantly, this includes the possibility to jointly measure chromatin marks and transcription at the single-cell level. We use EpiDamID to profile single-cell Polycomb occupancy in mouse embryoid bodies and provide evidence for hierarchical gene regulatory networks. In addition, we map H3K9me3 in early zebrafish embryogenesis, and detect striking heterochromatic regions specific to notochord. Overall, EpiDamID is a new addition to a vast toolbox to study chromatin states during dynamic cellular processes.


Assuntos
Código das Histonas , Histonas , Animais , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Camundongos , Processamento de Proteína Pós-Traducional , Transcriptoma , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Curr Opin Cell Biol ; 70: 51-57, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33360765

RESUMO

A large proportion of the metazoan genome is spatially segregated at the nuclear periphery through genomic contacts with the nuclear lamina, a thin meshwork of lamin filaments that lines the inner-nuclear membrane. Lamina-associated domains are believed to contribute to the regulation of gene transcription and to provide structural three-dimensional support to the organization of the genome in A and B compartments and topologically associating domains. In this review, we will evaluate recent work addressing the role of lamina-associated domains in three-dimensional genome organization and propose experimental frameworks that may expand our understanding of their interdependence.


Assuntos
Genoma , Lâmina Nuclear , Animais , Núcleo Celular , Cromatina , Filamentos Intermediários , Membrana Nuclear
8.
Methods Mol Biol ; 2214: 265-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32944916

RESUMO

Investigating the chromatin landscape of the early mammalian embryo is essential to understand how epigenetic mechanisms may direct reprogramming and cell fate allocation. Genome-wide analyses of the epigenome in preimplantation mouse embryos have recently become available, thanks to the development of low-input protocols. DNA adenine methyltransferase identification (DamID) enables the investigation of genome-wide protein-DNA interactions without the requirement of specific antibodies. Most importantly, DamID can be robustly applied to single cells. Here we describe the protocol for performing DamID in single oocytes and mouse preimplantation embryos, as well as single blastomeres, using a Dam-LaminB1 fusion to generate high-resolution lamina-associated domain (LAD) maps. This low-input method can be adapted for other proteins of interest to faithfully profile their genomic interaction, allowing us to interrogate the chromatin dynamics and nuclear organization during the early mammalian development.


Assuntos
Blastocisto/metabolismo , Genômica/métodos , Camundongos/embriologia , Camundongos/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Animais , Blastocisto/citologia , Células Cultivadas , Técnicas de Cultura Embrionária/métodos , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Análise de Célula Única/métodos
9.
Methods Mol Biol ; 2157: 159-172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32820403

RESUMO

The organization of DNA within the eukaryotic nucleus is important for cellular processes such as regulation of gene expression and repair of DNA damage. To comprehend cell-to-cell variation within a complex system, systematic analysis of individual cells is necessary. While many tools exist to capture DNA conformation and chromatin context, these methods generally require large populations of cells for sufficient output. Here we describe single-cell DamID, a technique to capture contacts between DNA and a given protein of interest. By fusing the bacterial methyltransferase Dam to nuclear lamina protein lamin B1, genomic regions in contact with the nuclear periphery can be mapped. Single-cell DamID generates contact maps with sufficient throughput and resolution to reliably identify patterns of similarity as well as variation in nuclear organization of interphase chromosomes.


Assuntos
Cromatina/metabolismo , Genômica/métodos , Lâmina Nuclear/metabolismo , Animais , Cromatina/química , DNA/química , DNA/metabolismo , Humanos , Lamina Tipo B/química , Lamina Tipo B/metabolismo , Lâmina Nuclear/química
10.
Nat Protoc ; 15(6): 1922-1953, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32350457

RESUMO

Protein-DNA interactions are essential for establishing cell type-specific chromatin architecture and gene expression. We recently developed scDam&T-seq, a multi-omics method that can simultaneously quantify protein-DNA interactions and the transcriptome in single cells. The method effectively combines two existing methods: DNA adenine methyltransferase identification (DamID) and CEL-Seq2. DamID works through the tethering of a protein of interest (POI) to the Escherichia coli DNA adenine methyltransferase (Dam). Upon expression of this fusion protein, DNA in proximity to the POI is methylated by Dam and can be selectively digested and amplified. CEL-Seq2, in contrast, makes use of poly-dT primers to reverse transcribe mRNA, followed by linear amplification through in vitro transcription. scDam&T-seq is the first technique capable of providing a combined readout of protein-DNA contact and transcription from single-cell samples. Once suitable cell lines have been established, the protocol can be completed in 5 d, with a throughput of hundreds to thousands of cells. The processing of raw sequencing data takes an additional 1-2 d. Our method can be used to understand the transcriptional changes a cell undergoes upon the DNA binding of a POI. It can be performed in any laboratory with access to FACS, robotic and high-throughput-sequencing facilities.


Assuntos
DNA/metabolismo , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Proteínas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , DNA/genética , Metilação de DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Camundongos , Ligação Proteica , Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Transcriptoma
11.
Nature ; 579(7800): 603-608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132710

RESUMO

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption1. Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers1,2. Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer3,4. The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells5-7. However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


Assuntos
Acetaldeído/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA , Reparo do DNA , Replicação do DNA/fisiologia , DNA/química , Etanol/química , Anemia de Fanconi/metabolismo , Animais , Cisplatino/química , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Etanol/farmacologia , Mutagênese/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Mutação Puntual/efeitos dos fármacos , Mutação Puntual/genética , Xenopus , Proteínas de Xenopus/metabolismo
12.
Nat Biotechnol ; 37(7): 766-772, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209373

RESUMO

Protein-DNA interactions are critical to the regulation of gene expression, but it remains challenging to define how cell-to-cell heterogeneity in protein-DNA binding influences gene expression variability. Here we report a method for the simultaneous quantification of protein-DNA contacts by combining single-cell DNA adenine methyltransferase identification (DamID) with messenger RNA sequencing of the same cell (scDam&T-seq). We apply scDam&T-seq to reveal how genome-lamina contacts or chromatin accessibility correlate with gene expression in individual cells. Furthermore, we provide single-cell genome-wide interaction data on a polycomb-group protein, RING1B, and the associated transcriptome. Our results show that scDam&T-seq is sensitive enough to distinguish mouse embryonic stem cells cultured under different conditions and their different chromatin landscapes. Our method will enable the analysis of protein-mediated mechanisms that regulate cell-type-specific transcriptional programs in heterogeneous tissues.


Assuntos
Análise de Célula Única/métodos , Transcriptoma , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
13.
Curr Opin Genet Dev ; 55: 19-25, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31112905

RESUMO

The nuclear lamina (NL) consists of a thin meshwork of lamins and associated proteins that lines the inner nuclear membrane (INM). In metazoan nuclei, a large proportion of the genome contacts the NL in broad lamina-associated domains (LADs). Contacts of the NL with the genome are believed to aid the spatial organization of chromosomes and contribute to the regulation of transcription. Here, we will focus on recent insights in the structural organization of the genome at the NL and the role of this organization in the regulation of gene expression.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromossomos/metabolismo , Regulação da Expressão Gênica , Genoma , Laminas/metabolismo , Lâmina Nuclear/metabolismo , Animais , Núcleo Celular/genética , Cromatina/genética , Cromossomos/genética , Humanos , Laminas/genética , Lâmina Nuclear/genética
14.
Nature ; 569(7758): 729-733, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118510

RESUMO

In mammals, the emergence of totipotency after fertilization involves extensive rearrangements of the spatial positioning of the genome1,2. However, the contribution of spatial genome organization to the regulation of developmental programs is unclear3. Here we generate high-resolution maps of genomic interactions with the nuclear lamina (a filamentous meshwork that lines the inner nuclear membrane) in mouse pre-implantation embryos. We reveal that nuclear organization is not inherited from the maternal germline but is instead established de novo shortly after fertilization. The two parental genomes establish lamina-associated domains (LADs)4 with different features that converge after the 8-cell stage. We find that the mechanism of LAD establishment is unrelated to DNA replication. Instead, we show that paternal LAD formation in zygotes is prevented by ectopic expression of Kdm5b, which suggests that LAD establishment may be dependent on remodelling of H3K4 methylation. Our data suggest a step-wise assembly model whereby early LAD formation precedes consolidation of topologically associating domains.


Assuntos
Posicionamento Cromossômico , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Genoma/fisiologia , Lâmina Nuclear/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Feminino , Fertilização , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Zigoto/citologia , Zigoto/metabolismo
15.
Nat Struct Mol Biol ; 26(6): 471-480, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133702

RESUMO

Current understanding of chromosome folding is largely reliant on chromosome conformation capture (3C)-based experiments, where chromosomal interactions are detected as ligation products after chromatin crosslinking. To measure chromosome structure in vivo, quantitatively and without crosslinking and ligation, we implemented a modified version of DNA adenine methyltransferase identification (DamID) named DamC, which combines DNA methylation-based detection of chromosomal interactions with next-generation sequencing and biophysical modeling of methylation kinetics. DamC performed in mouse embryonic stem cells provides the first in vivo validation of the existence of topologically associating domains (TADs), CTCF loops and confirms 3C-based measurements of the scaling of contact probabilities. Combining DamC with transposon-mediated genomic engineering shows that new loops can be formed between ectopic and endogenous CTCF sites, which redistributes physical interactions within TADs. DamC provides the first crosslinking- and ligation-free demonstration of the existence of key structural features of chromosomes and provides novel insights into how chromosome structure within TADs can be manipulated.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Metilação de DNA , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cromatina/química , Cromossomos/química , Cromossomos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/química , Células-Tronco Embrionárias Murinas/metabolismo , Conformação de Ácido Nucleico , Proteínas Recombinantes de Fusão/metabolismo
16.
Cells ; 8(3)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901978

RESUMO

The nuclear lamina (NL) is a thin meshwork of filaments that lines the inner nuclear membrane, thereby providing a platform for chromatin binding and supporting genome organization. Genomic regions contacting the NL are lamina associated domains (LADs), which contain thousands of genes that are lowly transcribed, and enriched for repressive histone modifications. LADs are dynamic structures that shift spatial positioning in accordance with cell-type specific gene expression changes during differentiation and development. Furthermore, recent studies have linked the disruption of LADs and alterations in the epigenome with the onset of diseases such as cancer. Here we focus on the role of LADs and the NL in gene regulation during development and cancer.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Lâmina Nuclear/metabolismo , Animais , Metilação de DNA/genética , Humanos
18.
Cell ; 163(1): 134-47, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26365489

RESUMO

Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT.


Assuntos
Cromatina/metabolismo , Lâmina Nuclear/metabolismo , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Cromatina/química , Cromossomos/química , Cromossomos/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Hibridização in Situ Fluorescente , Interfase
19.
Genes Dev ; 28(23): 2591-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452271

RESUMO

The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.


Assuntos
Caenorhabditis elegans/genética , Mecanismo Genético de Compensação de Dose/genética , Cromossomo X/química , Cromossomo X/genética , Animais , Regulação da Expressão Gênica , Organismos Hermafroditas/genética , Masculino , Modelos Genéticos
20.
Nature ; 508(7496): 345-50, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24740065

RESUMO

Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.


Assuntos
Síndrome de Down/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Transcriptoma/genética , Animais , Células Cultivadas , Cromatina/química , Cromatina/metabolismo , Cromossomos Humanos Par 21/genética , Cromossomos de Mamíferos/genética , Período de Replicação do DNA , Síndrome de Down/patologia , Feminino , Feto/citologia , Fibroblastos , Histonas/química , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisina/metabolismo , Masculino , Metilação , Camundongos , Gêmeos Monozigóticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA