Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(24): 17965-17976, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36459429

RESUMO

Granular activated carbon (GAC) is used to sorb a broad range of halogenated contaminant classes, but spent GAC disposal is costly. Taking advantage of GAC's conductivity, this study evaluated the conversion of the GAC to cathodes for electrochemical reductive dehalogenation of 15 halogenated alkanes and alkenes exhibiting a diversity of structures (type of halogen, number of halogens, functional groups) and including contaminants of practical importance (e.g., trichloroethylene). Alkane degradation rates increased with the number of halogens and in the order: chlorine < bromine < iodine. Quantitative structure-activity relationships (QSARs) correlating experimental first-order degradation rate constants for alkanes with molecular descriptors associated with an outer-sphere one-electron transfer calculated using density functional theory indicated that correlations with molecular descriptors improved in the order: aqueous phase reduction potentials (E0,aq) < energy of the substrate's lowest unoccupied molecular orbital (ELUMO) < Marcus theory activation free energies (ΔG‡) ∼ gas-phase standard reduction free energies (ΔG0,gas). Chlorinated alkene degradation rates increased with decreasing number of chlorines, and QSAR correlations were opposite those of alkanes, indicating a different reaction mechanism. Degradation timescales ranged from 1 min to 3 h with halides as predominant products. These results suggest that the electrochemical reduction of halogenated alkanes and alkenes can be used to regenerate spent GAC.


Assuntos
Alcanos , Carvão Vegetal , Alcenos , Halogênios/química , Cloro , Eletrodos
2.
Environ Sci Technol ; 54(24): 16176-16185, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33269915

RESUMO

Reverse osmosis (RO) treatment of municipal wastewater effluent is becoming more common as water reuse is implemented in water-stressed regions. Where RO concentrate is discharged with limited dilution, concentrations of trace organic contaminants could pose risks to aquatic ecosystems. To provide a low-cost option for removing trace organic compounds from RO concentrate, a pilot-scale treatment system comprising open-water unit-process wetlands with and without ozone pretreatment was studied over a 2-year period. A suite of ecotoxicologically relevant organic contaminants was partially removed via photo- and bio-transformations, including ß-adrenergic blockers, antivirals, antibiotics, and pesticides. Biotransformation rates were as fast as or up to approximately 50% faster than model predictions based upon data from open-water wetlands that treated municipal wastewater effluent. Phototransformation rates were comparable to or as much as 60% slower than those predicted by models that accounted for light penetration and scavenging of reactive oxygen species. Several compounds were transformed during ozone pretreatment that were poorly removed in the open-water wetland. The combined treatment system resulted in a decrease in the risk quotients of trace organic contaminants in the RO concentrate, but still dilution may be required to protect sensitive species from urban-use pesticides with low environmental effect concentrations.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Ecossistema , Osmose , Eliminação de Resíduos Líquidos , Águas Residuárias , Água , Áreas Alagadas
3.
Water Res ; 176: 115744, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251944

RESUMO

This study evaluated ozone treatment to address concerns regarding the discharge to marine waters of chemical contaminants and pathogens in reverse osmosis (RO) concentrates generated during the potable reuse of municipal wastewaters. Previous studies indicated that contaminants can be sorted into five groups based on their reaction rate constants with ozone and hydroxyl radical to predict degradation of chemical contaminants during ozonation of municipal effluents. Spiking representatives of each group into five RO concentrate samples, this study demonstrated that the same contaminant grouping scheme could be used to predict contaminant degradation during ozonation of RO concentrates, despite the higher concentrations of ozone and hydroxyl radical scavengers. The predictive capability of the contaminant grouping scheme was further validated for four contaminants of concern in RO concentrates, including the pesticides fipronil and imidacloprid, and the metal chelates Ni-EDTA and Cu-EDTA. After measuring their ozone and hydroxyl radical reaction rate constants, these compounds were assigned to contaminant groups, and their degradation during ozonation matched predictions. Addition of 300 mg/L CaO at pH 11 achieved partial removal of the native nickel and copper by precipitation. Ozone pretreatment further enhanced precipitation of nickel, but not copper. Ozonation achieved 5-log inactivation of MS2 in all five concentrate samples at 1.18 mg O3/mg DOC. Ozonation at 0.9 mg O3/mg DOC formed 139-451 µg/L bromate. Pretreatment of RO concentrates with chlorine and ammonia reduced bromate formation by a maximum of 48% but increased total halogenated DBP concentrations from 20 µg/L to 36 µg/L. Regardless, neither bromate nor trihalomethane concentrations exceeded threshold concentrations of concern for discharge to marine waters.


Assuntos
Ozônio , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Metais , Osmose , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA