Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526609

RESUMO

Developmentally programmed polyploidy (whole-genome duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, in both Drosophila larvae and human organ donors, we reveal distinct polyploidy levels in cardiac organ chambers. In Drosophila, differential growth and cell cycle signal sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume and cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic human cardiomyopathies. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest that precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.


Assuntos
Drosophila , Miócitos Cardíacos , Animais , Humanos , Poliploidia , Ploidias , Ciclo Celular
2.
bioRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798187

RESUMO

Developmentally programmed polyploidy (whole-genome-duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, we reveal roles for precise polyploidy levels in cardiac tissue. We highlight a conserved asymmetry in polyploidy level between cardiac chambers in Drosophila larvae and humans. In Drosophila , differential Insulin Receptor (InR) sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume, cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic systemic human heart failure. Using human donor hearts, we reveal asymmetry in nuclear volume (ploidy) and insulin signaling between the left ventricle and atrium. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.

3.
Elife ; 92020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33051002

RESUMO

Multiple nuclei sharing a common cytoplasm are found in diverse tissues, organisms, and diseases. Yet, multinucleation remains a poorly understood biological property. Cytoplasm sharing invariably involves plasma membrane breaches. In contrast, we discovered cytoplasm sharing without membrane breaching in highly resorptive Drosophila rectal papillae. During a six-hour developmental window, 100 individual papillar cells assemble a multinucleate cytoplasm, allowing passage of proteins of at least 62 kDa throughout papillar tissue. Papillar cytoplasm sharing does not employ canonical mechanisms such as incomplete cytokinesis or muscle fusion pore regulators. Instead, sharing requires gap junction proteins (normally associated with transport of molecules < 1 kDa), which are positioned by membrane remodeling GTPases. Our work reveals a new role for apical membrane remodeling in converting a multicellular epithelium into a giant multinucleate cytoplasm.


Most cells are self-contained ­ they have a cell membrane that delimits and therefore defines the cell, separating it from other cells and from its environment. But sometimes several cells interconnect and form collectives so they can pool their internal resources. Some of the best-known examples of this happen in animal muscle cells and in the placenta of mammals. These cell collectives share their cytoplasm ­ the fluid within the cell membrane that contains the cell organelles ­ in one of two ways. Cells can either remain linked instead of breaking away when they divide, or they can fuse their membranes with those of their neighbors. Working out how cells link to their neighbors is difficult when so few examples of cytoplasm sharing are available for study. One way to tackle this is to try and find undiscovered cell collectives in an animal that is already heavily studied in the lab, such as the fruit fly Drosophila melanogaster. Peterson et al. used a genetic system that randomly labels each cell of the developing fly with one of three fluorescent proteins. These proteins are big and should not move between cells unless they are sharing their cytoplasm. This means that any cell containing two or more different colors of fluorescent protein must be connected to at least one of its neighbors. The experiment revealed that the cells of the fruit fly rectum share their cytoplasm in a way never seen before. This sharing occurs at a consistent point in the development of the fruit fly and uses a different set of genes to those used by interconnecting cells in mammal muscles and placenta. These genes produce proteins that reshape the membranes of the cells and fit them with gap junctions ­ tiny pores that cross from one membrane to the next, allowing the passage of very small molecules. In this case, the gap junctions allowed the cells to share molecules much larger than seen before. The result is a giant cell membrane containing the cytoplasm and organelles of more than a hundred individual cells. These findings expand scientists' understanding of how cells in a tissue can share cytoplasm and resources. They also introduce a new tissue in the fruit fly that can be used in future studies of cytoplasm sharing. Relatives of fruit flies, including fruit pests and mosquitos, have similar cell structure to the fruit fly, which means that further investigations using this system could result in advances in agriculture or human health.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster/embriologia , Intestinos/embriologia , Animais , Conexinas/metabolismo , Cruzamentos Genéticos , Citocinese , Citosol/metabolismo , Epitélio/metabolismo , GTP Fosfo-Hidrolases/química , Junções Comunicantes , Genótipo , Microscopia Eletrônica de Transmissão , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA