Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
G3 (Bethesda) ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718200

RESUMO

During the last decade, the spotted-wing drosophila, Drosophila suzukii, has spread from eastern Asia to the Americas, Europe, and Africa. This fly attacks many species of cultivated and wild fruits with soft, thin skins, where its serrated ovipositor allows it to lay eggs in undamaged fruit. Parasitoids from the native range of D. suzukii may provide sustainable management of this polyphagous pest. Among these parasitoids, host-specificity testing has revealed a lineage of Ganaspis near brasiliensis, referred to in this paper as G1, that appears to be a cryptic species more host-specific to D. suzukii than other parasitoids. Differentiation among cryptic species is critical for introduction and subsequent evaluation of their impact on D. suzukii. Here we present results on divergence in genomic sequences and architecture and reproductive isolation between lineages of Ganaspis near brasiliensis that appear to be cryptic species. We studied five populations, two from China, two from Japan, and one from Canada, identified as the G1 versus G3 lineages based on differences in cytochrome oxidase l sequences. We assembled and annotated the genomes of these populations and analyzed divergences in sequence and genome architecture between them. We also report results from crosses to test reproductive compatibility between the G3 lineage from China and the G1 lineage from Japan. The combined results on sequence divergence, differences in genome architectures, ortholog divergence, reproductive incompatibility, differences in host ranges and microhabitat preferences, and differences in morphology show that these lineages are different species. Thus, the decision to evaluate the lineages separately and only import and introduce the more host-specific lineage to North America and Europe was appropriate.

2.
Plant Physiol ; 193(4): 2321-2336, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37706526

RESUMO

Fine mapping of quantitative trait loci (QTL) to dissect the genetic basis of traits of interest is essential to modern breeding practice. Here, we employed a multitiered haplotypic marker system to increase fine mapping accuracy by constructing a chromosome-level, haplotype-resolved parental genome, accurate detection of recombination sites, and allele-specific characterization of the transcriptome. In the first tier of this system, we applied the preexisting panel of 2,000 rhAmpSeq core genome markers that is transferable across the entire Vitis genus and provides a genomic resolution of 200 kb to 1 Mb. The second tier consisted of high-density haplotypic markers generated from Illumina skim sequencing data for samples enriched for relevant recombinations, increasing the potential resolution to hundreds of base pairs. We used this approach to dissect a novel Resistance to Plasmopara viticola-33 (RPV33) locus conferring resistance to grapevine downy mildew, narrowing the candidate region to only 0.46 Mb. In the third tier, we used allele-specific RNA-seq analysis to identify a cluster of 3 putative disease resistance RPP13-like protein 2 genes located tandemly in a nonsyntenic insertion as candidates for the disease resistance trait. In addition, combining the rhAmpSeq core genome haplotype markers and skim sequencing-derived high-density haplotype markers enabled chromosomal-level scaffolding and phasing of the grape Vitis × doaniana 'PI 588149' assembly, initially built solely from Pacific Biosciences (PacBio) high-fidelity (HiFi) reads, leading to the correction of 16 large-scale phasing errors. Our mapping strategy integrates high-density, phased genetic information with individual reference genomes to pinpoint the genetic basis of QTLs and will likely be widely adopted in highly heterozygous species.


Assuntos
Oomicetos , Vitis , Resistência à Doença/genética , Mapeamento Cromossômico , Haplótipos/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Vitis/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-30533767

RESUMO

Vibrio coralliilyticus RE22 is an indigenous marine pathogen that infects larval bivalve shellfish. This strain is particularly problematic in oyster hatcheries, where it causes high larval mortality. It contains two circular chromosomes and one megaplasmid. Annotation reveals multiple genes which may encode important virulence factors.

4.
PLoS One ; 9(9): e106818, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191843

RESUMO

Proximal spinal muscular atrophy (SMA) is an early onset, autosomal recessive motor neuron disease caused by loss of or mutation in SMN1 (survival motor neuron 1). Despite understanding the genetic basis underlying this disease, it is still not known why motor neurons (MNs) are selectively affected by the loss of the ubiquitously expressed SMN protein. Using a mouse embryonic stem cell (mESC) model for severe SMA, the RNA transcript profiles (transcriptomes) between control and severe SMA (SMN2+/+;mSmn-/-) mESC-derived MNs were compared in this study using massively parallel RNA sequencing (RNA-Seq). The MN differentiation efficiencies between control and severe SMA mESCs were similar. RNA-Seq analysis identified 3,094 upregulated and 6,964 downregulated transcripts in SMA mESC-derived MNs when compared against control cells. Pathway and network analysis of the differentially expressed RNA transcripts showed that pluripotency and cell proliferation transcripts were significantly increased in SMA MNs while transcripts related to neuronal development and activity were reduced. The differential expression of selected transcripts such as Crabp1, Crabp2 and Nkx2.2 was validated in a second mESC model for SMA as well as in the spinal cords of low copy SMN2 severe SMA mice. Furthermore, the levels of these selected transcripts were restored in high copy SMN2 rescue mouse spinal cords when compared against low copy SMN2 severe SMA mice. These findings suggest that SMN deficiency affects processes critical for normal development and maintenance of MNs.


Assuntos
Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Estudos de Casos e Controles , Células Cultivadas , Células-Tronco Embrionárias/patologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteína Homeobox Nkx-2.2 , Camundongos , Modelos Biológicos , Atrofia Muscular Espinal/patologia
5.
Cancer Genet ; 205(6): 295-303, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22749035

RESUMO

Myeloproliferative neoplasms (MPNs) result from genetically altered hematopoietic stem cells that retain the capacity for multilineage differentiation. The study of genomic mutations identified so far suggests that they occur after a common ancestral event or that different mutations result in similar MPN phenotypes. We report analysis of a chromosomal translocation, t(12;22)(q14.3;q13.2), in a patient with a BCR-ABL1-negative, JAK2V617F-positive MPN. Comparative genomic hybridization (CGH) array and targeted sequencing detected no mutation in nine genes reported to influence the JAK2V617F-driven MPNs (MPL, LNK, CBL, TET2, EZH2, IKZF1, IDH1, IDH2, ASXL1). Next-generation sequencing revealed a balanced HMGA2-EFCAB6 genomic rearrangement. The HMGA2 breakpoint leads to the loss of seven 3'UTR binding sites for the microRNA (miRNA) let-7 tumor suppressor. The breakpoint in the EFCAB6 gene abrogates transcription of EFCAB6. Measurement of expression showed retention of HMGA2 transcription and no detectable EFCAB6 transcript. Allele burden comparison in a sample containing the translocation, showed 90% HMGA2-EFCAB6 versus 50% JAK2V617F allele dose, suggesting HMGA2-EFCAB6 rearrangement plays a more ancestral role, pre-JAK2V617F, in the neoplastic process. The pathogenicity of the translocation may rest on collaborations among JAK2V617F-induced constitutive activation of JAK2, the oncogenic property of HMGA2, and disrupted pathways, such as alteration in DJ-1 expression, resulting from the impact of EFCAB6 abrogation.


Assuntos
Proteína HMGA2/genética , Janus Quinase 2/genética , Transtornos Mieloproliferativos/genética , Translocação Genética , Idoso , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 22/genética , Evolução Fatal , Feminino , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transtornos Mieloproliferativos/patologia , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/genética , Proteína Desglicase DJ-1 , Análise de Sequência de DNA
6.
Database (Oxford) ; 2012: bar064, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22434832

RESUMO

Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.


Assuntos
Biologia Computacional/métodos , Anotação de Sequência Molecular , Rajidae/genética , Animais , Sequência de Bases , Genoma , Dados de Sequência Molecular , Software
8.
Breast Cancer Res Treat ; 113(2): 393-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18311584

RESUMO

An African American individual with early onset breast cancer has a unique BRCA1 germline mutation, E1644X, that truncates the protein's carboxy terminal region. DNA sequencing for E1644X mutation and five BRCA1 exon-11 single nucleotide polymorphisms showed tumor LOH. Clinical history suggests paternal transmission of the deleterious allele, and tumor polymorphisms provide some insight into the ancestral origins of the mutation.


Assuntos
Substituição de Aminoácidos , Negro ou Afro-Americano/genética , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Códon sem Sentido , Genes BRCA1 , Mutação em Linhagem Germinativa , Síndromes Neoplásicas Hereditárias/genética , Mutação Puntual , Adulto , Idade de Início , Alelos , Neoplasias da Mama/etnologia , Carcinoma Ductal de Mama/etnologia , DNA de Neoplasias/genética , Feminino , Humanos , Perda de Heterozigosidade , Síndromes Neoplásicas Hereditárias/etnologia , Nigéria , Linhagem , Polimorfismo de Nucleotídeo Único
9.
J Gen Virol ; 82(Pt 5): 1123-1135, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11297687

RESUMO

The complete coding sequence of the herpesvirus of turkeys (HVT) unique long (U(L)) region along with the internal repeat regions has been determined. This allows completion of the HVT nucleotide sequence by linkage to the sequence of the unique short (U(S)) region. The genome is approximately 160 kbp and shows extensive similarity in organization to the genomes of Marek's disease virus serotypes 1 and 2 (MDV-1, MDV-2) and other alphaherpesviruses. The HVT genome contains 75 ORFs, with three ORFs present in two copies. Sixty-seven ORFs were identified readily as homologues of other alphaherpesvirus genes. Seven of the remaining eight ORFs are homologous to genes in MDV, but are absent from other herpesviruses. These include a gene with similarity to cellular lipases. The final, HVT-unique gene is a virus homologue of the cellular NR-13 gene, the product of which belongs to the Bcl family of proteins that regulate apoptosis. No other herpesvirus sequenced to date contains a homologue of this gene. Of potential significance is the absence of a complete block of genes within the HVT internal repeat that is present in MDV-1. These include the pp38 and meq genes, which have been implicated in MDV-1-induced T-cell lymphoma. By implication, other genes present in this region of MDV-1, but missing in HVT, may play important roles in the different biological properties of the viruses.


Assuntos
Genoma Viral , Herpesvirus Galináceo 2/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Genes Virais/fisiologia , Glicoproteínas/genética , Herpesvirus Galináceo 2/classificação , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta , Homologia de Sequência de Aminoácidos , Perus , Proteínas do Envelope Viral/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA