Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Angew Chem Int Ed Engl ; 63(13): e202319579, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38291002

RESUMO

A cascade of three enzymes, E1-E2-E3, is responsible for transferring ubiquitin to target proteins, which controls many different aspects of cellular signaling. The role of the E2 has been largely overlooked, despite influencing substrate identity, chain multiplicity, and topology. Here we report a method-targeted charging of ubiquitin to E2 (tCUbE)-that can track a tagged ubiquitin through its entire enzymatic cascade in living mammalian cells. We use this approach to reveal new targets whose ubiquitination depends on UbcH5a E2 activity. We demonstrate that tCUbE can be broadly applied to multiple E2s and in different human cell lines. tCUbE is uniquely suited to examine E2-E3-substrate cascades of interest and/or piece together previously unidentified cascades, thereby illuminating entire branches of the UPS and providing critical insight that will be useful for identifying new therapeutic targets in the UPS.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Animais , Humanos , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Mamíferos/metabolismo
2.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358447

RESUMO

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proto-Oncogene Mas , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteínas Supressoras de Tumor/genética
3.
Leukemia ; 35(5): 1405-1417, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542482

RESUMO

Translocations of Meningioma-1 (MN1) occur in a subset of acute myeloid leukemias (AML) and result in high expression of MN1, either as a full-length protein, or as a fusion protein that includes most of the N-terminus of MN1. High levels of MN1 correlate with poor prognosis. When overexpressed in murine hematopoietic progenitors, MN1 causes an aggressive AML characterized by an aberrant myeloid precursor-like gene expression program that shares features of KMT2A-rearranged (KMT2A-r) leukemia, including high levels of Hoxa and Meis1 gene expression. Compounds that target a critical KMT2A-Menin interaction have proven effective in KMT2A-r leukemia. Here, we demonstrate that Menin (Men1) is also critical for the self-renewal of MN1-driven AML through the maintenance of a distinct gene expression program. Genetic inactivation of Men1 led to a decrease in the number of functional leukemia-initiating cells. Pharmacologic inhibition of the KMT2A-Menin interaction decreased colony-forming activity, induced differentiation programs in MN1-driven murine leukemia and decreased leukemic burden in a human AML xenograft carrying an MN1-ETV6 translocation. Collectively, these results nominate Menin inhibition as a promising therapeutic strategy in MN1-driven leukemia.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica/genética , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Camundongos Knockout
4.
Blood Adv ; 4(13): 3109-3122, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32634241

RESUMO

Understanding mechanisms of cooperation between oncogenes is critical for the development of novel therapies and rational combinations. Acute myeloid leukemia (AML) cells with KMT2A-fusions and KMT2A partial tandem duplications (KMT2APTD) are known to depend on the histone methyltransferase DOT1L, which methylates histone 3 lysine 79 (H3K79). About 30% of KMT2APTD AMLs carry mutations in IDH1/2 (mIDH1/2). Previous studies showed that 2-hydroxyglutarate produced by mIDH1/2 increases H3K79 methylation, and mIDH1/2 patient samples are sensitive to DOT1L inhibition. Together, these findings suggested that stabilization or increases in H3K79 methylation associated with IDH mutations support the proliferation of leukemias dependent on this mark. However, we found that mIDH1/2 and KMT2A alterations failed to cooperate in an experimental model. Instead, mIDH1/2 and 2-hydroxyglutarate exert toxic effects, specifically on KMT2A-rearranged AML cells (fusions/partial tandem duplications). Mechanistically, we uncover an epigenetic barrier to efficient cooperation; mIDH1/2 expression is associated with high global histone 3 lysine 79 dimethylation (H3K79me2) levels, whereas global H3K79me2 is obligate low in KMT2A-rearranged AML. Increasing H3K79me2 levels, specifically in KMT2A-rearrangement leukemias, resulted in transcriptional downregulation of KMT2A target genes and impaired leukemia cell growth. Our study details a complex genetic and epigenetic interaction of 2 classes of oncogenes, IDH1/2 mutations and KMT2A rearrangements, that is unexpected based on the high percentage of IDH mutations in KMT2APTD AML. KMT2A rearrangements are associated with a trend toward lower response rates to mIDH1/2 inhibitors. The substantial adaptation that has to occur for 2 initially counteracting mutations to be tolerated within the same leukemic cell may provide at least a partial explanation for this observation.


Assuntos
Rearranjo Gênico , Leucemia Mieloide Aguda , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Metilação , Oncogenes
5.
Exp Hematol ; 85: 57-69, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32437908

RESUMO

Inhibition of the H3K79 histone methyltransferase DOT1L has exhibited encouraging preclinical and early clinical activity in KMT2A (MLL)-rearranged leukemia, supporting the development of combinatorial therapies. Here, we investigated two novel combinations: dual inhibition of the histone methyltransferases DOT1L and EZH2, and the combination with a protein synthesis inhibitor. EZH2 is the catalytic subunit in the polycomb repressive complex 2 (PRC2), and inhibition of EZH2 has been reported to have preclinical activity in KMT2A-r leukemia. When combined with DOT1L inhibition, however, we observed both synergistic and antagonistic effects. Interestingly, antagonistic effects were not due to PRC2-mediated de-repression of HOXA9. HOXA cluster genes are key canonical targets of both KMT2A and the PRC2 complex. The independence of the HOXA cluster from PRC2 repression in KMT2A-r leukemia thus affords important insights into leukemia biology. Further studies revealed that EZH2 inhibition counteracted the effect of DOT1L inhibition on ribosomal gene expression. We thus identified a previously unrecognized role of DOT1L in regulating protein production. Decreased translation was one of the earliest effects measurable after DOT1L inhibition and specific to KMT2A-rearranged cell lines. H3K79me2 chromatin immunoprecipitation sequencing patterns over ribosomal genes were similar to those of the canonical KMT2A-fusion target genes in primary AML patient samples. The effects of DOT1L inhibition on ribosomal gene expression prompted us to evaluate the combination of EPZ5676 with a protein translation inhibitor. EPZ5676 was synergistic with the protein translation inhibitor homoharringtonine (omacetaxine), supporting further preclinical/clinical development of this combination. In summary, we discovered a novel epigenetic regulation of a metabolic process-protein synthesis-that plays a role in leukemogenesis and affords a combinatorial therapeutic opportunity.


Assuntos
Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Leucemia Mieloide Aguda/metabolismo , Biossíntese de Proteínas , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
6.
Elife ; 92020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32048991

RESUMO

More than 30% of genes in higher eukaryotes are regulated by promoter-proximal pausing of RNA polymerase II (Pol II). Phosphorylation of Pol II CTD by positive transcription elongation factor b (P-TEFb) is a necessary precursor event that enables productive transcription elongation. The exact mechanism on how the sequestered P-TEFb is released from the 7SK snRNP complex and recruited to Pol II CTD remains unknown. In this report, we utilize mouse and human models to reveal methylphosphate capping enzyme (MePCE), a core component of the 7SK snRNP complex, as the cognate substrate for Jumonji domain-containing 6 (JMJD6)'s novel proteolytic function. Our evidences consist of a crystal structure of JMJD6 bound to methyl-arginine, enzymatic assays of JMJD6 cleaving MePCE in vivo and in vitro, binding assays, and downstream effects of Jmjd6 knockout and overexpression on Pol II CTD phosphorylation. We propose that JMJD6 assists bromodomain containing 4 (BRD4) to recruit P-TEFb to Pol II CTD by disrupting the 7SK snRNP complex.


In animals, an enzyme known as RNA polymerase II (Pol II for short) is a key element of the transcription process, whereby the genetic information contained in DNA is turned into messenger RNA molecules in the cells, which can then be translated to proteins. To perform this task, Pol II needs to be activated by a complex of proteins called P-TEFb; however, P-TEFb is usually found in an inactive form held by another group of proteins. Yet, it is unclear how P-TEFb is released and allowed to activate Pol II. Scientists have speculated that another protein called JMJD6 (Jumonji domain-containing 6) is important for P-TEFb to activate Pol II. Various roles for JMJD6 have been proposed, but its exact purpose remains unclear. Recently, two enzymes closely related to JMJD6 were found to be able to make precise cuts in other proteins; Lee, Liu et al. therefore wanted to test whether this is also true of JMJD6. Experiments using purified JMJD6 showed that it could make a cut in an enzyme called MePCE, which belongs to the group of proteins that hold P-TEFb in its inactive form. Lee, Liu et al. then tested the relationships between these proteins in living human and mouse cells. The levels of activated Pol II were lower in cells without JMJD6 and higher in those without MePCE. Together, the results suggest that JMJD6 cuts MePCE to release P-TEFb, which then activates Pol II. JMJD6 appears to know where to cut by following a specific pattern of elements in the structure of MePCE. When MePCE was mutated so that the pattern changed, JMJD6 was unable to cut it. These results suggest that JMJD6 and related enzymes belong to a new family of proteases, the molecular scissors that can cleave other proteins. The molecules that regulate transcription often are major drug targets, for example in the fight against cancer. Ultimately, understanding the role of JMJD6 might help to identify new avenues for cancer drug development.


Assuntos
Metiltransferases/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Sítios de Ligação , Western Blotting , Técnicas de Inativação de Genes , Espectrometria de Massas , Camundongos , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , Receptores de Superfície Celular/química
7.
J Org Chem ; 80(15): 7430-4, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26125326

RESUMO

The effects of a para substituent, as the electron-donating -OCH3 and -OtBu groups and the electron-withdrawing -Br and -F atoms, on azobenzene isomerization have been investigated in a series of imidazolium ionic liquids (BMIM PF6, BMIM BF4, BMIM Tf2N, EMIM Tf2N, BM2IM Tf2N, and HMIM Tf2N). The thermal cis-trans conversion tends to be improved in the presence of the substituent, as pointed out by the first-order rate constants measured at 25 °C. Both the rotation and the inversion mechanisms occur in BMIM Tf2N, EMIM Tf2N, and HMIM Tf2N, as highlighted by typical V-shape Hammett plots, but only rotation takes place in BMIM PF6, BMIM BF4, and BM2IM Tf2N. The possible interactions between the cation and the anion of the solvent and both the isomers of the azobenzene derivatives have been studied by small-wide-angle X-ray scattering (SWAXS). The calculated cis population in the photostationary state and the hardness parameter η of the trans isomer show that azobenzene and F-azobenzene are the less reactive molecules for the trans-cis conversion in all the investigated ionic liquids.


Assuntos
Compostos Azo/química , Líquidos Iônicos/química , Solventes/química , Imidazóis/química , Oxirredução , Temperatura
8.
Epigenetics ; 10(6): 467-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923537

RESUMO

Polycomblike (Pcl) proteins are important transcriptional regulators and components of the Polycomb Repressive Complex 2 (PRC2). The Tudor domains of human homologs PHF1 and PHF19 have been found to recognize trimethylated lysine 36 of histone H3 (H3K36me3); however, the biological role of Tudor domains of other Pcl proteins remains poorly understood. Here, we characterize the molecular basis underlying histone binding activities of the Tudor domains of the Pcl family. In contrast to a predominant view, we found that the methyl lysine-binding aromatic cage is necessary but not sufficient for recognition of H3K36me3 by these Tudor domains and that a hydrophobic patch, adjacent to the aromatic cage, is also required.


Assuntos
Proteínas de Ligação a DNA/química , Epigênese Genética , Histona-Lisina N-Metiltransferase/química , Complexo Repressor Polycomb 2/química , Proteínas do Grupo Polycomb/química , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metilação , Ressonância Magnética Nuclear Biomolecular , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA