Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
ACS Appl Nano Mater ; 6(19): 17986-17995, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854856

RESUMO

Integration of single-wall carbon nanotubes (SWCNTs) in the form of fabriclike sheets or other preformed assemblies (films, fibers, etc.) simplifies their handling and allows for composites with higher nanotube contents, which is needed to better exploit their outstanding properties and achieve multifunctional materials with improved performance. Here, we show the development of p-type SWCNT-thermoplastic polyurethane (TPU) fabric materials with a wide range of SWCNT contents (from 5 to 90 wt %) by employing a one-step filtration method using a suspension of SWCNTs in a TPU solvent/nonsolvent mixture. The mechanical and thermoelectric (TE) properties of these SWCNT-TPU nanocomposites were tailored by varying the SWCNT/TPU wt % ratio, achieving significant advantages relative to the pristine SWCNT buckypaper (BP) sheets in terms of strength and stretchability. In particular, the SWCNT-TPU nanocomposite with a 50/50 wt % ratio composition (equivalent to 15 vol % of SWCNTs) shows a power factor (PF) of 57 µW m-1 K-2, slightly higher compared to the PF of the SWCNT BP prepared under the same conditions (54 µW m-1 K-2), while its mechanical properties significantly increased (e.g., ∼7-, 25-, and 250-fold improvements in stiffness, strength, and tensile toughness, respectively). These results represent a significant step toward the development of easy-to-process self-supporting and stretchable materials with robust mechanical properties for flexible thermoelectric devices.

2.
ACS Omega ; 4(26): 22108-22113, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891091

RESUMO

Stable carbon isotope (δ(13C)) analysis can provide information concerning the starting materials and the production process of a material. Carbon nanotubes (CNTs) are produced using a variety of starting materials, catalysts, and production methods. The use of δ(13C) as a tool to infer the nature of starting materials to gain insight into the mechanics of CNT growth was evaluated. The production process of NRC's SWCNT-1 was traced via the δ(13C) measurement of the available starting materials, intermediate products, and the final product. As isotopic fractionation is likely negligible at high temperatures, the δ(13C) value of the starting materials was reflected in the δ(13C) value of the final CNT product. For commercially available CNTs, the estimated δ(13C) values of identified starting materials were related to the δ(13C) signatures of CNTs. Using this information and the δ(13C) values of CNTs, the nature of unknown carbon sources was inferred for some samples. The use of δ(13C) analysis may be used as a tracer to differentiate between those processes that use relatively 13C-depleted carbon source(s) such as carbon monoxide, methane, or natural gas, and those that do not.

3.
ACS Nano ; 12(1): 884-893, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29301086

RESUMO

We recently demonstrated scalable manufacturing of boron nitride nanotubes (BNNTs) directly from hexagonal BN (hBN) powder by using induction thermal plasma, with a high-yield rate approaching 20 g/h. The main finding was that the presence of hydrogen is crucial for the high-yield growth of BNNTs. Here we investigate the detailed role of hydrogen by numerical modeling and in situ optical emission spectroscopy (OES) and reveal that both the thermofluidic fields and chemical pathways are significantly altered by hydrogen in favor of rapid growth of BNNTs. The numerical simulation indicated improved particle heating and quenching rates (∼105 K/s) due to the high thermal conductivity of hydrogen over the temperature range of 3500-4000 K. These are crucial for the complete vaporization of the hBN feedstock and rapid formation of nanosized B droplets for the subsequent BNNT growth. Hydrogen is also found to extend the active BNNT growth zone toward the reactor downstream, maintaining the gas temperature above the B solidification limit (∼2300 K) by releasing the recombination heat of H atoms, which starts at 3800 K. The OES study revealed that H radicals also stabilize B or N radicals from dissociation of the feedstock as BH and NH radicals while suppressing the formation of N2 or N2+ species. Our density functional theory calculations showed that such radicals can provide faster chemical pathways for the formation of BN compared with relatively inert N2.

4.
Carbon N Y ; 113: 346-360, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30147114

RESUMO

A major use of multi-walled carbon nanotubes (MWCNTs) is as functional fillers embedded in a solid matrix, such as plastics or coatings. Weathering and abrasion of the solid matrix during use can lead to environmental releases of the MWCNTs. Here we focus on a protocol to identify and quantify the primary release induced by weathering, and assess reproducibility, transferability, and sensitivity towards different materials and uses. We prepared 132 specimens of two polymer-MWCNT composites containing the same grade of MWCNTs used in earlier OECD hazard assessments but without UV stabilizer. We report on a pilot inter-laboratory comparison (ILC) with four labs (two US and two EU) aging by UV and rain, then shipping for analysis. Two labs (one US and one EU) conducted the release sampling and analysis by Transmission Electron Microscopy (TEM), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), UltravioleteVisible Spectroscopy (UVeVis), Analytical Ultracentrifugation (AUC), and Asymmetric Flow Field Flow Fractionation (AF4). We compare results between aging labs, between analysis labs and between materials. Surprisingly, we found quantitative agreement between analysis labs for TEM, ICP-MS, UVeVis; low variation between aging labs by all methods; and consistent rankings of release between TEM, ICP-MS, UVeVis, AUC. Significant disagreement was related primarily to differences in aging, but even these cases remained within a factor of two.

5.
ACS Nano ; 9(12): 12573-82, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26580970

RESUMO

Boron nitride nanotubes (BNNTs) exhibit a range of properties that hold great potential for many fields of science and technology; however, they have inherently low chemical reactivity, making functionalization for specific applications difficult. Here we propose that covalent functionalization of BNNTs via reduction chemistry could be a highly promising and viable strategy. Through density functional theory calculations of the electron affinity of BNNTs and their binding energies with various radicals, we reveal that their chemical reactivity can be significantly enhanced via reducing the nanotubes (i.e., negatively charging). For example, a 5.5-fold enhancement in reactivity of reduced BNNTs toward NH2 radicals was predicted relative to their neutral counterparts. The localization characteristics of the BNNT π electron system lead the excess electrons to fill the empty p orbitals of boron sites, which promote covalent bond formation with an unpaired electron from a radical molecule. In support of our theoretical findings, we also experimentally investigated the covalent alkylation of BNNTs via reduction chemistry using 1-bromohexane. The thermogravimetric measurements showed a considerable weight loss (12-14%) only for samples alkylated using reduced BNNTs, suggesting their significantly improved reactivity over neutral BNNTs. This finding will provide an insight in developing an effective route to chemical functionalization of BNNTs.

6.
ACS Nano ; 8(6): 6211-20, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24807071

RESUMO

Boron nitride nanotubes (BNNTs) exhibit a range of properties that are as compelling as those of carbon nanotubes (CNTs); however, very low production volumes have prevented the science and technology of BNNTs from evolving at even a fraction of the pace of CNTs. Here we report the high-yield production of small-diameter BNNTs from pure hexagonal boron nitride powder in an induction thermal plasma process. Few-walled, highly crystalline small-diameter BNNTs (∼5 nm) are produced exclusively and at an unprecedentedly high rate approaching 20 g/h, without the need for metal catalysts. An exceptionally high cooling rate (∼10(5) K/s) in the induction plasma provides a strong driving force for the abundant nucleation of small-sized B droplets, which are known as effective precursors for small-diameter BNNTs. It is also found that the addition of hydrogen to the reactant gases is crucial for achieving such high-quality, high-yield growth of BNNTs. In the plasma process, hydrogen inhibits the formation of N2 from N radicals and promotes the creation of B-N-H intermediate species, which provide faster chemical pathways to the re-formation of a h-BN-like phase in comparison to nitridation from N2. We also demonstrate the fabrication of macroscopic BNNT assemblies such as yarns, sheets, buckypapers, and transparent thin films at large scales. These findings represent a seminal milestone toward the exploitation of BNNTs in real-world applications.

7.
Nanoscale ; 6(4): 2328-39, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24418869

RESUMO

A systematic study on the use of 9,9-dialkylfluorene homopolymers (PFs) for large-diameter semiconducting (sc-) single-walled carbon nanotube (SWCNT) enrichment is the focus of this report. The enrichment is based on a simple three-step extraction process: (1) dispersion of as-produced SWCNTs in a PF solution; (2) centrifugation at a low speed to separate the enriched sc-tubes; (3) filtration to collect the enriched sc-SWCNTs and remove excess polymer. The effect of the extraction conditions on the purity and yield including molecular weight and alkyl side-chain length of the polymers, SWCNT concentration, and polymer/SWCNT ratio have been examined. It was observed that PFs with alkyl chain lengths of C10, C12, C14, and C18, all have an excellent capability to enrich laser-ablation sc-SWCNTs when their molecular weight is larger than ∼10 000 Da. More detailed studies were therefore carried out with the C12 polymer, poly(9,9-di-n-dodecylfluorene), PFDD. It was found that a high polymer/SWCNT ratio leads to an enhanced yield but a reduced sc-purity. A ratio of 0.5-1.0 gives an excellent sc-purity and a yield of 5-10% in a single extraction as assessed by UV-vis-NIR absorption spectra. The yield can also be promoted by multiple extractions while maintaining high sc-purity. Mechanistic experiments involving time-lapse dispersion studies reveal that m-SWCNTs have a lower propensity to be dispersed, yielding a sc-SWCNT enriched material in the supernatant. Dispersion stability studies with partially enriched sc-SWCNT material further reveal that m-SWCNTs : PFDD complexes will re-aggregate faster than sc-SWCNTs : PFDD complexes, providing further sc-SWCNT enrichment. This result confirms that the enrichment was due to the much tighter bundles in raw materials and the more rapid bundling in dispersion of the m-SWCNTs. The sc-purity is also confirmed by Raman spectroscopy and photoluminescence excitation (PLE) mapping. The latter shows that the enriched sc-SWCNT sample has a narrow chirality and diameter distribution dominated by the (10,9) species with d = 1.29 nm. The enriched sc-SWCNTs allow a simple drop-casting method to form a dense nanotube network on SiO2/Si substrates, leading to thin film transistors (TFTs) with an average mobility of 27 cm(2) V(-1) s(-1) and an average on/off current ratio of 1.8 × 10(6) when considering all 25 devices having 25 µm channel length prepared on a single chip. The results presented herein demonstrate how an easily scalable technique provides large-diameter sc-SWCNTs with high purity, further enabling the best TFT performance reported to date for conjugated polymer enriched sc-SWCNTs.


Assuntos
Polímeros de Fluorcarboneto/química , Dióxido de Silício/química , Silício/química , Transistores Eletrônicos , Análise Espectral Raman
8.
Nanotechnology ; 24(26): 265701, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23732221

RESUMO

Previous studies suggest that carbon nanotubes (CNTs) have a considerable influence on the curing behavior and crosslink density of epoxy resins. This invariably has an important effect on different thermal and mechanical properties of the epoxy network. This work focuses on the important role of the epoxy/hardener mixing ratio on the mechanical and thermal properties of a high temperature aerospace-grade epoxy (MY0510 Araldite as an epoxy and 4,4'-diaminodiphenylsulfone as an aromatic hardener) modified with single-walled carbon nanotubes (SWCNTs). The effects of three different stoichiometries (stoichiometric and off-stoichiometric) on various mechanical and thermal properties (fracture toughness, tensile properties, glass transition temperature) of the epoxy resin and its SWCNT-modified composites were obtained. The results were also supported by Raman spectroscopy and scanning electron microscopy (SEM). For the neat resin, it was found that an epoxy/hardener molar ratio of 1:0.8 provides the best overall properties. In contrast, the pattern in property changes with the reaction stoichiometry was considerably different for composites reinforced with unfunctionalized SWCNTs and reduced SWCNTs. A comparison among composites suggests that a 1:1 molar ratio considerably outperforms the other two ratios examined in this work (1:0.8 and 1:1.1). This composition at 0.2 wt% SWCNT loading provides the highest overall mechanical properties by improving fracture toughness, ultimate tensile strength and ultimate tensile strain of the epoxy resin by 40%, 34%, 54%, respectively.

9.
Anal Bioanal Chem ; 402(1): 429-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22124752

RESUMO

Several techniques were evaluated for the establishment of reliable water/moisture content of single-wall carbon nanotubes. Karl Fischer titration (KF) provides a direct measure of the water content and was used for benchmarking against results obtained by conventional oven drying, desiccation over anhydrous magnesium perchlorate as well as by thermogravimetry and prompt gamma-ray activation analysis. Agreement amongst results was satisfactory with the exception of thermogravimetry, although care must be taken with oven drying as it is possible to register mass gain after an initial moisture loss if prolonged drying time or elevated temperatures (120 °C) are used. Thermogravimetric data were precise but a bias was evident that could be accounted for by considering the non-selective loss of mass as volatile carbonaceous components. Simple drying over anhydrous magnesium perchlorate for a minimum period of 8-10 days is recommended if KF is not available for this measurement.


Assuntos
Nanotubos de Carbono/análise , Água/análise , Dessecação , Termogravimetria
10.
ACS Appl Mater Interfaces ; 3(7): 2309-17, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21612292

RESUMO

Reduced single-walled carbon nanotubes (r-SWCNT) are shown to react readily at room temperature under inert atmosphere conditions with epoxide moieties, such as those in triglycidyl p-amino phenol (TGAP), to produce a soft covalently bonded interface around the SWCNT. The soft interface is compatible with the SWCNT-free cross-linked cured matrix and acts as a toughener for the composite. Incorporation of 0.2 wt % r-SWCNT enhances the ultimate tensile strength, toughness and fracture toughness by 32, 118, and 40%, respectively, without change in modulus. A toughening rate (dK(IC)/dwt(f)) of 200 MPa m(0.5) is obtained. The toughening mechanism is elucidated through dynamic mechanical analyses, Raman spectroscopy and imaging, and stress-strain curve analyses. The method is scalable and applicable to epoxy resins and systems used commercially.

11.
Anal Bioanal Chem ; 396(3): 1037-44, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19838681

RESUMO

We have successfully applied coupled thermogravimetry, mass spectrometry, and infrared spectroscopy to the quantification of surface functional groups on single-walled carbon nanotubes. A high-purity single-walled carbon nanotube sample was subjected to a rapid functionalization reaction that attached butyric acid moieties to the nanotube sidewalls. This sample was then subjected to thermal analysis under inert desorption conditions. Resultant infrared and mass spectrometric data were easily utilized to identify the desorption of the butyric acid groups across a narrow temperature range and we were able to calculate the degree of substitution of the attached acid groups within the nanotube backbone as 1.7 carbon atoms per hundred, in very good agreement with independent analytical measurements made by inductively coupled plasma optical emission spectrometry (ICP-OES). The thermal analysis technique was also able to discern the presence of secondary functional moieties on the nanotube samples that were not accessible by ICP-OES. This work demonstrates the potential of this technique for assessing the presence of multiple and diverse functional addends on the nanotube sidewalls, beyond just the principal groups targeted by the specific functionalization reaction.

12.
Nanotechnology ; 20(24): 245701, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19471083

RESUMO

Single-walled carbon nanotubes (SWCNT) have been reduced with sodium naphthalide in THF. The reduced SWCNT are not only soluble in dimethylsulfoxide (DMSO) to form a stable solution/suspension, but also react spontaneously at room temperature with DMSO to evolve hydrocarbon gases and are converted into functionalized SWCNT. The degree of functionalization is about 2C% and the addends are mainly methyl and small oxygen-containing hydrocarbons. The functionalized SWCNT are apparently more soluble and stable in DMSO solution. It may open a new era for further processing and applications.


Assuntos
Cristalização/métodos , Dimetil Sulfóxido/química , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Oxirredução , Tamanho da Partícula , Solubilidade , Propriedades de Superfície
13.
J Nanosci Nanotechnol ; 6(5): 1225-32, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16792349

RESUMO

Very shortly following the discovery of single-walled carbon nanotubes laser-based methods emerged as reliable ways to produce moderate quantities with very consistent composition and properties. They have also proven to be good platforms for the systematic investigation of various synthesis parameters in the hope of better understanding the growth process. Several variations exist with differences such as laser wavelength, number of lasers, background temperature, and target composition. A number of common elements have emerged for the production of both high quality and high yields of SWNT, such as the effectiveness of bimetal catalysts like CoNi and NiY, and the need for high process temperatures and controlling the rate of cooling. Combined with the growing amount of in situ diagnostic and computational modelling data we are slowly making progress towards understanding the growth process. This article will present an overview of recent advancements in laser-based synthesis methods and what information can be extracted about the growth process.


Assuntos
Cristalização/métodos , Lasers , Modelos Químicos , Nanotecnologia/métodos , Nanotecnologia/tendências , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Simulação por Computador , Temperatura Alta , Cinética , Modelos Moleculares
14.
J Phys Chem B ; 109(4): 1400-7, 2005 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851109

RESUMO

A simple wet chemical method involving only ultrasonic processing in dilute ceric sulfate (CS) was used to functionalize carbon nanotubes (CNTs). Unexpectedly, single-walled and multiwalled carbon nanotubes (SWCNTs and MWCNTs) were cut, oxidized, and disintegrated by sonication in 0.1 N CS for 2-5 h. Transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction spectroscopy (XRD), Raman scattering, and photoacoustic Fourier transform infrared spectroscopy (FTIR) were used to probe wall damage during the chemical processing. Cyclic voltammetry and impedance spectroscopy were used to evaluate the conductivity of the CS-treated CNTs. This one-step process resulted in the destruction of SWCNTs to produce nonconducting amorphous carbon. MWCNTs were oxidized and converted to graphitic materials and amorphous carbon with retained conductivity.


Assuntos
Nanotubos de Carbono/química , Ácidos Sulfúricos/química , Condutividade Elétrica , Nanotubos de Carbono/ultraestrutura , Oxirredução , Tamanho da Partícula , Sonicação , Água/química
15.
J Phys Chem B ; 109(19): 9317-20, 2005 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16852115

RESUMO

We have measured 21 adsorption isotherms for argon on single-walled carbon nanotubes produced by laser ablation. We explored temperatures between 40 and 153 K to obtain the coverage dependence of the isosteric heat of adsorption for films in the first and second layers. Our data are compared to results obtained in computer simulation studies and to data obtained in previous experimental investigations of this system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA