Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Commun ; 12(1): 1052, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594070

RESUMO

The parasitic protist Trypanosoma brucei is the causative agent of Human African Trypanosomiasis, also known as sleeping sickness. The parasite enters the blood via the bite of the tsetse fly where it is wholly reliant on glycolysis for the production of ATP. Glycolytic enzymes have been regarded as challenging drug targets because of their highly conserved active sites and phosphorylated substrates. We describe the development of novel small molecule allosteric inhibitors of trypanosome phosphofructokinase (PFK) that block the glycolytic pathway resulting in very fast parasite kill times with no inhibition of human PFKs. The compounds cross the blood brain barrier and single day oral dosing cures parasitaemia in a stage 1 animal model of human African trypanosomiasis. This study demonstrates that it is possible to target glycolysis and additionally shows how differences in allosteric mechanisms may allow the development of species-specific inhibitors to tackle a range of proliferative or infectious diseases.


Assuntos
Glicólise/efeitos dos fármacos , Fosfofrutoquinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Trypanosoma/enzimologia , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Doença Aguda , Regulação Alostérica/efeitos dos fármacos , Animais , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estimativa de Kaplan-Meier , Camundongos , Parasitos/efeitos dos fármacos , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Multimerização Proteica , Relação Estrutura-Atividade , Trypanosoma/efeitos dos fármacos , Tripanossomíase Africana/tratamento farmacológico
2.
Biochem J ; 477(22): 4425-4441, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33141153

RESUMO

6-Phosphofructokinase-1-kinase (PFK) tetramers catalyse the phosphorylation of fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F16BP). Vertebrates have three PFK isoforms (PFK-M, PFK-L, and PFK-P). This study is the first to compare the kinetics, structures, and transcript levels of recombinant human PFK isoforms. Under the conditions tested PFK-M has the highest affinities for F6P and ATP (K0.5ATP 152 µM; K0.5F6P 147 µM), PFK-P the lowest affinities (K0.5ATP 276 µM; K0.5F6P 1333 µM), and PFK-L demonstrates a mixed picture of high ATP affinity and low F6P affinity (K0.5ATP 160 µM; K0.5F6P 1360 µM). PFK-M is more resistant to ATP inhibition compared with PFK-L and PFK-P (respectively, 23%, 31%, 50% decreases in specificity constants). GTP is an alternate phospho donor. Interface 2, which regulates the inactive dimer to active tetramer equilibrium, differs between isoforms, resulting in varying tetrameric stability. Under the conditions tested PFK-M is less sensitive to fructose 2,6-bisphosphate (F26BP) allosteric modulation than PFK-L or PFK-P (allosteric constants [K0.5ATP+F26BP/K0.5ATP] 1.10, 0.92, 0.54, respectively). Structural analysis of two allosteric sites reveals one may be specialised for AMP/ADP and the other for smaller/flexible regulators (citrate or phosphoenolpyruvate). Correlations between PFK-L and PFK-P transcript levels indicate that simultaneous expression may expand metabolic capacity for F16BP production whilst preserving regulatory capabilities. Analysis of cancer samples reveals intriguing parallels between PFK-P and PKM2 (pyruvate kinase M2), and simultaneous increases in PFK-P and PFKFB3 (responsible for F26BP production) transcript levels, suggesting prioritisation of metabolic flexibility in cancers. Our results describe the kinetic and transcript level differences between the three PFK isoforms, explaining how each isoform may be optimised for distinct roles.


Assuntos
Regulação Enzimológica da Expressão Gênica , Fosfofrutoquinases , Transcrição Gênica , Regulação Alostérica , Frutosefosfatos/química , Frutosefosfatos/genética , Frutosefosfatos/metabolismo , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/genética , Especificidade de Órgãos , Fosfofrutoquinases/biossíntese , Fosfofrutoquinases/química , Fosfofrutoquinases/genética , Fosforilação
3.
FEBS J ; 287(13): 2847-2861, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31838765

RESUMO

Trypanosomatids possess glycosome organelles that contain much of the glycolytic machinery, including phosphofructokinase (PFK). We present kinetic and structural data for PFK from three human pathogenic trypanosomatids, illustrating intriguing differences that may reflect evolutionary adaptations to differing ecological niches. The activity of Leishmania PFK - to a much larger extent than Trypanosoma PFK - is reliant on AMP for activity regulation, with 1 mm AMP increasing the L. infantum PFK (LiPFK) kcat/K0.5F6P value by 10-fold, compared to only a 1.3- and 1.4-fold increase for T. cruzi and T. brucei PFK, respectively. We also show that Leishmania PFK melts at a significantly lower (> 15 °C) temperature than Trypanosoma PFKs and that addition of either AMP or ATP results in a marked stabilization of the protein. Sequence comparisons of Trypanosoma spp. and Leishmania spp. show that divergence of the two genera involved amino acid substitutions that occur in the enzyme's 'reaching arms' and 'embracing arms' that determine tetramer stability. The dramatic effects of AMP on Leishmania activity compared with the Trypanosoma PFKs may be explained by differences between the T-to-R equilibria for the two families, with the low-melting Leishmania PFK favouring the flexible inactive T-state in the absence of AMP. Sequence comparisons along with the enzymatic and structural data presented here also suggest there was a loss of AMP-dependent regulation in Trypanosoma species rather than gain of this characteristic in Leishmania species and that AMP acts as a key regulator in Leishmania governing the balance between glycolysis and gluconeogenesis.


Assuntos
Monofosfato de Adenosina/metabolismo , Glicólise , Guanosina Trifosfato/metabolismo , Leishmania/enzimologia , Fosfofrutoquinases/química , Fosfofrutoquinases/metabolismo , Trypanosoma brucei brucei/enzimologia , Monofosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Evolução Biológica , Domínio Catalítico , Cristalografia por Raios X , Gluconeogênese , Guanosina Trifosfato/química , Humanos , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade da Espécie , Especificidade por Substrato
4.
Biochem J ; 476(2): 179-191, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30404924

RESUMO

Eukaryotic ATP-dependent phosphofructokinases (PFKs) are often considered unidirectional enzymes catalysing the transfer of a phospho moiety from ATP to fructose 6-phosphate to produce ADP and fructose 1,6-bisphosphate. The reverse reaction is not generally considered to occur under normal conditions and has never been demonstrated for any eukaryotic ATP-dependent PFKs, though it does occur in inorganic pyrophosphate-dependent PFKs and has been experimentally shown for bacterial ATP-dependent PFKs. The evidence is provided via two orthogonal assays that all three human PFK isoforms can catalyse the reverse reaction in vitro, allowing determination of kinetic properties. Additionally, the reverse reaction was shown possible for PFKs from three clinically important trypanosomatids; these enzymes are contained within glycosomes in vivo This compartmentalisation may facilitate reversal, given the potential for trypanosomatids to have an altered ATP/ADP ratio in glycosomes compared with the cytosol. The kinetic properties of each trypanosomatid PFK were determined, including the response to natural and artificial modulators of enzyme activity. The possible physiological relevance of the reverse reaction in trypanosomatid and human PFKs is discussed.


Assuntos
Fosfofrutoquinases/química , Proteínas de Protozoários/química , Trypanosoma/enzimologia , Humanos , Isoenzimas , Cinética , Fosfotransferases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA