Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Basic Res Cardiol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483601

RESUMO

Anthracyclines are highly potent anti-cancer drugs, but their clinical use is limited by severe cardiotoxic side effects. The impact of anthracycline-induced cardiotoxicity (AIC) on left ventricular (LV) microarchitecture and diffusion properties remains unknown. This study sought to characterize AIC by cardiovascular magnetic resonance diffusion tensor imaging (DTI). Mice were treated with Doxorubicin (DOX; n = 16) for induction of AIC or saline as corresponding control (n = 15). Cardiac function was assessed via echocardiography at the end of the study period. Whole hearts (n = 8 per group) were scanned ex vivo by high-resolution DTI at 7 T. Results were correlated with histopathology and mass spectrometry imaging. Mice with AIC demonstrated systolic dysfunction (LVEF 52 ± 3% vs. 43 ± 6%, P < 0.001), impaired global longitudinal strain (-19.6 ± 2.0% vs. -16.6 ± 3.0%, P < 0.01), and cardiac atrophy (LV mass index [mg/mm], 4.3 ± 0.1 vs. 3.6 ± 0.2, P < 0.01). Regional sheetlet angles were significantly lower in AIC, whereas helix angle and relative helicity remained unchanged. In AIC, fractional anisotropy was increased (0.12 ± 0.01 vs. 0.14 ± 0.02, P < 0.05). DOX-treated mice displayed higher planar and less spherical anisotropy (CPlanar 0.07 ± 0.01 vs. 0.09 ± 0.01, P < 0.01; CSpherical 0.89 ± 0.01 vs. 0.87 ± 0.02, P < 0.05). CPlanar and CSpherical yielded good discriminatory power to distinguish between mice with and without AIC (c-index 0.91 and 0.84, respectively, P for both < 0.05). AIC is associated with regional changes in sheetlet angle but no major abnormalities of global LV microarchitecture. The geometric shape of the diffusion tensor is altered in AIC. DTI may provide a new tool for myocardial characterization in patients with AIC, which warrants future clinical studies to evaluate its diagnostic utility.

2.
ESC Heart Fail ; 11(3): 1553-1566, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243357

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is a multifactorial, multisystemic syndrome that involves alterations in lipid metabolism. This study aimed to test whether distinct plasma lipid profiles or lipid entities or both are associated with clinical and functional echocardiographic parameters in HFpEF. METHODS AND RESULTS: We examined the human plasma lipidome in HFpEF patients (n = 18) with left ventricular ejection fraction ≥50% and N-terminal pro-brain natriuretic peptide (NT-proBNP) >125 pg/mL and control subjects (n = 12) using mass spectrometry-based shotgun lipidomics. The cohort included 8 women and 22 men with average age of 67.8 ± 8.6 SD. The control and disease groups were not significantly different with respect to age, body mass index, systolic and diastolic blood pressure, and waist-to-hip ratio. The disease group experienced more fatigue (P < 0.001), had more often coronary artery disease (P = 0.04), and received more medications (beta-blockers, P < 0.001). The disease group had significantly different levels of HFpEF-relevant parameters, including NT-proBNP (P < 0.001), left ventricular mass index (P = 0.005), left atrial volume index (P = 0.001), and left ventricular filling index (P < 0.001), and lower left ventricular end-diastolic diameter (P = 0.014), with no difference in left ventricular ejection fraction. Significant differences in lipid profiles between HFpEF patients and controls could not be detected, including no significant differences in abundance of circulating lipids binned by carbon chain length or by double bonds, nor at the level of individual lipid species. However, there was a striking correlation between selected lipids with smoking status that was independent of disease status, as well as between specific lipids and hyperlipidaemia [with corresponding significance of either false discovery rate (FDR) <0.1 or FDR < 0.01]. In an exploratory network analysis of correlations, we observed significantly stronger correlations within the HFpEF group between individual lipids from the cholesterol ester and phosphatidylcholine (PC) classes and clinical/echocardiographic parameters such as left atrial volume index, left ventricular end-diastolic diameters, and heart rate (FDR < 0.1). In contrast, the control group showed significantly stronger negative correlations (FDR < 0.1) between individual species from the PC and sphingomyelin classes and left ventricular mass index or systolic blood pressure. CONCLUSIONS: We did not find significant direct associations between plasma lipidomic parameters and HFpEF and therefore could not conclude that any specific lipids are biomarkers of HFpEF. The validation in larger cohort is needed to confidently conclude the absence of first-order associations.


Assuntos
Insuficiência Cardíaca , Lipidômica , Volume Sistólico , Função Ventricular Esquerda , Humanos , Masculino , Feminino , Volume Sistólico/fisiologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Idoso , Função Ventricular Esquerda/fisiologia , Ecocardiografia , Biomarcadores/sangue , Lipídeos/sangue , Pessoa de Meia-Idade , Peptídeo Natriurético Encefálico/sangue
3.
Curr Cardiol Rep ; 25(12): 1859-1864, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37991625

RESUMO

PURPOSE OF REVIEW: Novel non-steroidal mineralocorticoid receptor (MR) antagonists (MRAs) are a new class of drugs blocking adverse MR-mediated effects with an improved benefit-risk profile compared to steroidal MRAs. This review will provide information on the preclinical and clinical pharmacology of this new drug class and will discuss their future clinical applications in patients with cardiorenal disease. RECENT FINDINGS: Non-steroidal MRAs such as esaxerenone, AZD9977, apararenone, ocedurenone (KBP-5074), and finerenone are newly approved or in clinical development for patients with cardiorenal disease including type 2 diabetes (T2D) and chronic kidney disease (CKD), hypertension -/+ CKD or heart failure. Unlike steroidal MRAs, non-steroidal MRAs do not induce sex hormone-related side effects and appear to mediate a lower risk of hyperkalemia while maintaining compelling clinical efficacy. Recently, new data from several clinical trials with non-steroidal MRAs have been published (e.g., FIDELIO-DKD, FIGARO-DKD, ESAX-DN, and BLOCK-CKD), and additional studies are currently underway (e.g., FINEARTS-HF and CLARION-CKD). These data and the clinical scientific basis for the ongoing studies will be discussed. Non-steroidal MRAs have been extensively explored in diabetic kidney disease. Selected candidates of this drug class reduced UACR in patients with varying degrees of CKD and T2D and have shown convincing cardiorenal protection, in particular finerenone. Furthermore, finerenone is currently tested in patients with heart failure with preserved ejection fraction.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Insuficiência Cardíaca , Insuficiência Renal Crônica , Humanos , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
4.
Cardiovasc Diabetol ; 22(1): 162, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386461

RESUMO

Finerenone is a novel non-steroidal mineralocorticoid receptor (MR) antagonist (MRA) with high binding affinity, high MR selectivity and a short plasma half-life. In two major endpoint-driven clinical trials in patients with chronic kidney disease and type 2 diabetes mellitus (FIDELIO-DKD and FIGARO-DKD), finerenone induced significant cardiorenal protective actions, and has been recently approved for treatment of these patients. Heart failure with preserved ejection fraction (HFpEF) is a devastating clinical syndrome with increasing prevalence and poor prognosis. Pharmacological therapy of HFpEF is very limited and new therapeutic options are urgently needed. Finerenone has been shown to improve multiple pathophysiological parameters of HFpEF in preclinical models. In consonance, pre-specified subgroup analyses of FIDELIO-DKD and FIGARO-DKD suggested a potential beneficial effect of finerenone in HFpEF. This review will discuss the pharmacodynamic and -kinetic profile of finerenone. We will provide a general overview over the complex pathophysiology of HFpEF and data from pre-clinical studies, focusing on how finerenone improves multiple components of this pathophysiology. Finally, we will discuss current and future clinical trials with finerenone in heart failure patients focusing on HFpEF.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/efeitos adversos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Volume Sistólico
5.
Clin Res Cardiol ; 112(2): 197-202, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35220445

RESUMO

BACKGROUND: The 2018 European Society of Cardiology (ESC)/European Society of Hypertension (ESH) guidelines for the management of hypertension highlight the importance of fixed-dose combinations (FDC) for the treatment of hypertension and recommend initial single-pill combination therapy in almost all patients. However, data on the implementation of these recommendations in clinical practice are scarce. METHODS: Data from the German Institute for Drug Use Evaluation (DAPI) were analyzed and extrapolated accounting for approximately 88% of Germany's population (approximately 73.3 million subjects). All antihypertensive (AHT) FDC products available on the German market were included in the analyses. We examined the time course of dispensed packages between January 2016 and December 2020. RESULTS: FDCs accounted for 15.4% of all AHT in 2016 and for 10.9% in 2020. While dispensing of all AHT increased slightly from year to year (2016: 143.8 million, 2020: 153.2 million packs), dispensing of FDCs decreased from 22.2 million (2016) to 16.6 million (2020) packs. Dispensing of FDCs containing hydrochlorothiazide (HCT) declined considerably from 2016 to 2020 (Q1 2016: 4.65 million, Q4 2020: 3.13 million packs). Accordingly, the proportion of HCT-containing combinations in all FDCs decreased from 85.3 to 74.2% from Q1 2016 to Q4 2020. Patients younger than 80 years were prescribed FDCs more frequently (14.6% of all AHT, based on the entire evaluation period) than patients 80 years and older (10.0%). In both age groups, this proportion decreased continuously over time. CONCLUSIONS: Almost 2 years following the release of the 2018 ESC/ESH guidelines, only 10.9% of the prescribed packs of antihypertensive drugs in 2020 were FDC products, documenting underutilization of current guideline recommendations on pharmacotherapy in hypertension. Structured programs to evidence-based decision support are required to improve guideline inertia and patient outcomes, eventually.


Assuntos
Cardiologia , Hipertensão , Humanos , Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hidroclorotiazida/uso terapêutico , Alemanha/epidemiologia , Combinação de Medicamentos
6.
Science ; 378(6625): eabq5209, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520888

RESUMO

Cells respond to fluctuating nutrient supply by adaptive changes in organelle dynamics and in metabolism. How such changes are orchestrated on a cell-wide scale is unknown. We show that endosomal signaling lipid turnover by MTM1, a phosphatidylinositol 3-phosphate [PI(3)P] 3-phosphatase mutated in X-linked centronuclear myopathy in humans, controls mitochondrial morphology and function by reshaping the endoplasmic reticulum (ER). Starvation-induced endosomal recruitment of MTM1 impairs PI(3)P-dependent contact formation between tubular ER membranes and early endosomes, resulting in the conversion of ER tubules into sheets, the inhibition of mitochondrial fission, and sustained oxidative metabolism. Our results unravel an important role for early endosomal lipid signaling in controlling ER shape and, thereby, mitochondrial form and function to enable cells to adapt to fluctuating nutrient environments.


Assuntos
Retículo Endoplasmático , Endossomos , Mitocôndrias , Dinâmica Mitocondrial , Fosfatos de Fosfatidilinositol , Fosfatidilinositóis , Proteínas Tirosina Fosfatases não Receptoras , Humanos , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Mitocôndrias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
7.
Biomedicines ; 10(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552027

RESUMO

Cannabinoids (CB) are implicated in cardiovascular diseases via the two main receptor subtypes CB1R and CB2R. This study investigated whether cannabinoids regulate the activity of matrix metalloproteases (MMP-2, MMP-9) in vascular smooth muscle cells (VSMCs) and in cells of cardiac origin (H9c2 cell line). The influence of CB1- and CB2 receptor stimulation or inhibition on cell proliferation, apoptosis and glucose uptake was also evaluated. We used four compounds that activate or block CB receptors: arachidonyl-2-chloroethylamide (ACEA)-CB1R agonist, rimonabant-CB1R antagonist, John W. Huffman (JWH133)-CB2R agonist and CB2R antagonist-6-Iodopravadoline (AM630). Treatment of cells with the CB2R agonist JWH133 decreased cytokine activated secretion of proMMP-2, MMP-2 and MMP-9, reduced Fas ligand and caspase-3-mediated apoptosis, normalized the expression of TGF-beta1 and prevented cytokine-induced increase in glucose uptake into the cell. CB1R inhibition with rimonabant showed similar protective properties as the CB2R agonist JWH133, but to a lesser extent. In conclusion, CB1R and CB2R exert opposite effects on cell glucose uptake, proteolysis and apoptosis in both VSMCs and H9c2 cells. The CB2R agonist JWH133 demonstrated the highest protective properties. These findings may pave the way to a new treatment of cardiovascular diseases, especially those associated with extracellular matrix degradation.

8.
Am J Nephrol ; 53(7): 552-564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35675794

RESUMO

INTRODUCTION: Chronic activation of the mineralocorticoid receptor (MR) leads to pathological processes like inflammation and fibrosis during cardiorenal disease. Modulation of immunological processes in the heart or kidney may serve as a mechanistic and therapeutic interface in cardiorenal pathologies. In this study, we investigated anti-inflammatory/-fibrotic and immunological effects of the selective nonsteroidal MR antagonists finerenone (FIN) in the deoxycorticosterone acetate (DOCA)-salt model. METHODS: Male C57BL6/J mice were uninephrectomized and received a DOCA pellet implantation (2.4 mg/day) plus 0.9% NaCl in drinking water (DOCA-salt) or received a sham operation and were orally treated with FIN (10 mg/kg/day) or vehicle in a preventive study design. Five weeks after the procedure, blood pressure (BP), urinary albumin/creatinine ratio (UACR), glomerular and tubulointerstitial damage, echocardiographic cardiac function, as well as cardiac/renal inflammatory cell content by FACS analysis were assessed. RESULTS: BP was significantly reduced by FIN. FACS analysis revealed a notable immune response due to DOCA-salt exposure. Especially, infiltrating renal RORγt γδ-positive T cells were upregulated, which was significantly ameliorated by FIN treatment. This was accompanied by a significant reduction of UACR in FIN-treated mice. In the heart, FIN reduced DOCA-salt-induced cardiac hypertrophy, cardiac fibrosis and led to an improvement of the global longitudinal strain. Cardiac actions of FIN were not associated with a regulation of cardiac RORγt γδ-positive T cells. DISCUSSION/CONCLUSION: The present study shows cardiac and renal protective effects of FIN in a DOCA-salt model. The cardiorenal protection was accompanied by a reduction of renal RORγt γδ T cells. The observed actions of FIN may provide a potential mechanism of its efficacy recently observed in clinical trials.


Assuntos
Hipertensão Renal , Hipertensão , Naftiridinas , Linfócitos T , Animais , Pressão Sanguínea , Acetato de Desoxicorticosterona , Fibrose , Hipertensão/tratamento farmacológico , Hipertensão Renal/patologia , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naftiridinas/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/uso terapêutico
9.
Front Cardiovasc Med ; 9: 839714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449873

RESUMO

Background: Obesity exerts multiple deleterious effects on the heart that may ultimately lead to cardiac failure. This study sought to characterize myocardial microstructure and function in an experimental model of obesity-related cardiac dysfunction. Methods: Male C57BL/6N mice were fed either a high-fat diet (HFD; 60 kcal% fat, n = 12) or standard control diet (9 kcal% fat, n = 10) for 15 weeks. At the end of the study period, cardiac function was assessed by ultra-high frequency echocardiography, and hearts were processed for further analyses. The three-dimensional myocardial microstructure was examined ex vivo at a spatial resolution of 100 × 100 × 100 µm3 by diffusion tensor magnetic resonance imaging (DT-MRI) at 7T. Myocardial deformation, diffusion metrics and fiber tract geometry were analyzed with respect to the different myocardial layers (subendocardium/subepicardium) and segments (base/mid-cavity/apex). Results were correlated with blood sample analyses, histopathology, and gene expression data. Results: HFD feeding induced significantly increased body weight combined with a pronounced accumulation of visceral fat (body weight 42.3 ± 5.7 vs. 31.5 ± 2.2 g, body weight change 73.7 ± 14.8 vs. 31.1 ± 6.6%, both P < 0.001). Obese mice showed signs of diastolic dysfunction, whereas left-ventricular ejection fraction and fractional shortening remained unchanged (E/e' 41.6 ± 16.6 vs. 24.8 ± 6.0, P < 0.01; isovolumic relaxation time 19 ± 4 vs. 14 ± 4 ms, P < 0.05). Additionally, global longitudinal strain was reduced in the HFD group (-15.1 ± 3.0 vs. -20.0 ± 4.6%, P = 0.01), which was mainly driven by an impairment in basal segments. However, histopathology and gene expression analyses revealed no myocardial fibrosis or differences in cardiomyocyte morphology. Mean diffusivity and eigenvalues of the diffusion tensor were lower in the basal subepicardium of obese mice as assessed by DT-MRI (P < 0.05). The three-dimensional fiber tract arrangement of the left ventricle (LV) remained preserved. Conclusion: Fifteen weeks of high-fat diet induced alterations in myocardial diffusion properties in mice, whereas no remodeling of the three-dimensional myofiber arrangement of the LV was observed. Obese mice showed reduced longitudinal strain and lower mean diffusivity predominantly in the left-ventricular base, and further investigation into the significance of this regional pattern is required.

10.
Cardiovasc Res ; 118(11): 2488-2505, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34061169

RESUMO

AIMS: Heart failure (HF) is characterized by an overactivation of ß-adrenergic signalling that directly contributes to impairment of myocardial function. Moreover, ß-adrenergic overactivation induces adipose tissue lipolysis, which may further worsen the development of HF. Recently, we demonstrated that adipose tissue-specific deletion of adipose triglyceride lipase (ATGL) prevents pressure-mediated HF in mice. In this study, we investigated the cardioprotective effects of a new pharmacological inhibitor of ATGL, Atglistatin, predominantly targeting ATGL in adipose tissue, on catecholamine-induced cardiac damage. METHODS AND RESULTS: Male 129/Sv mice received repeated injections of isoproterenol (ISO, 25 mg/kg BW) to induce cardiac damage. Five days prior to ISO application, oral Atglistatin (2 mmol/kg diet) or control treatment was started. Two and twelve days after the last ISO injection cardiac function was analysed by echocardiography. The myocardial deformation was evaluated using speckle-tracking-technique. Twelve days after the last ISO injection, echocardiographic analysis revealed a markedly impaired global longitudinal strain, which was significantly improved by the application of Atglistatin. No changes in ejection fraction were observed. Further studies included histological-, WB-, and RT-qPCR-based analysis of cardiac tissue, followed by cell culture experiments and mass spectrometry-based lipidome analysis. ISO application induced subendocardial fibrosis and a profound pro-apoptotic cardiac response, as demonstrated using an apoptosis-specific gene expression-array. Atglistatin treatment led to a dramatic reduction of these pro-fibrotic and pro-apoptotic processes. We then identified a specific set of fatty acids (FAs) liberated from adipocytes under ISO stimulation (palmitic acid, palmitoleic acid, and oleic acid), which induced pro-apoptotic effects in cardiomyocytes. Atglistatin significantly blocked this adipocytic FA secretion. CONCLUSION: This study demonstrates cardioprotective effects of Atglistatin in a mouse model of catecholamine-induced cardiac damage/dysfunction, involving anti-apoptotic and anti-fibrotic actions. Notably, beneficial cardioprotective effects of Atglistatin are likely mediated by non-cardiac actions, supporting the concept that pharmacological targeting of adipose tissue may provide an effective way to treat cardiac dysfunction.


Assuntos
Catecolaminas , Insuficiência Cardíaca , Tecido Adiposo/metabolismo , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Animais , Catecolaminas/metabolismo , Lipase/genética , Lipase/metabolismo , Lipólise , Masculino , Camundongos , Compostos de Fenilureia
11.
Diabetologia ; 65(3): 528-540, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34846543

RESUMO

AIMS/HYPOTHESIS: Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells. METHODS: Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. RESULTS: Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60-90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. CONCLUSION/INTERPRETATION: WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease.


Assuntos
Dieta Hiperlipídica , Haploinsuficiência , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Termogênese/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo
12.
Pest Manag Sci ; 78(3): 869-880, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34821007

RESUMO

BACKGROUND: Resistance to diamide insecticides in Lepidoptera is known to be caused primarily by amino acid changes on the ryanodine receptor (RyR). Recently, two new target site mutations, G4946V and I4790M, have emerged in populations of diamondback moth, Plutella xylostella, as well as in other lepidopteran species, and both mutations have been shown empirically to decrease diamide efficacy. Here, we quantify the impact of the I4790M mutation on diamide activation of the receptor, as compared to alterations at the G4946 locus. RESULTS: I4790M when introduced into P. xylostella RyR expressed in an insect-derived Sf9 cell line was found to mediate just a ten-fold reduction in chlorantraniliprole efficacy (compared to 104- and 146-fold reductions for the G4946E and G4946V variants, respectively), whilst in the field its presence is associated with a ≥150-fold reduction. I4790M-mediated resistance to flubendiamide was estimated to be >24-fold. When the entire coding sequence of P. xylostella RyR was integrated into Drosophila melanogaster, the I4790M variant conferred ~4.4-fold resistance to chlorantraniliprole and 22-fold resistance to flubendiamide in the 3rd instar larvae, confirming that it imparts only a moderate level of resistance to diamide insecticides. Although the I4790M substitution appears to bear no fitness costs in terms of the flies' reproductive capacity, when assessed in a noncompetitive environment, it does, however, have potentially major impacts on mobility at both the larval and adult stages. CONCLUSIONS: I4790M imparts only a moderate level of resistance to diamide insecticides and potentially confers significant fitness costs to the insect.


Assuntos
Resistência a Inseticidas , Mariposas , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Animais Geneticamente Modificados , Linhagem Celular , Diamida/farmacologia , Drosophila melanogaster/genética , Resistência a Inseticidas/genética , Mariposas/genética , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
13.
Br J Pharmacol ; 179(13): 3220-3234, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34811750

RESUMO

Mineralocorticoid receptor antagonists (MRAs) are key agents in guideline-oriented drug therapy for cardiovascular diseases such as chronic heart failure with reduced ejection fraction and resistant hypertension. Currently available steroidal MRAs are efficacious in reducing morbidity and mortality; however, they can be associated with intolerable side effects including hyperkalaemia in everyday clinical practice. Recently, a new class of non-steroidal MRAs (including esaxerenone, AZD9977, apararenone, KBP-5074 and finerenone) have been developed with an improved benefit-risk profile and a novel indication for finerenone for diabetic kidney disease. To better understand the non-steroidal MRAs, this review provides information on the molecular pharmacology as well as relevant current preclinical and clinical data on cardiorenal outcomes. A comparative review of all compounds in the class is discussed with regard to clinical efficacy and safety as well as a perspective outlining their future use in clinical practice. LINKED ARTICLES: This article is part of a themed issue on Emerging Fields for Therapeutic Targeting of the Aldosterone-Mineralocorticoid Receptor Signaling Pathway. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.13/issuetoc.


Assuntos
Insuficiência Cardíaca , Antagonistas de Receptores de Mineralocorticoides , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hipertensão Renal , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Mineralocorticoides/uso terapêutico , Nefrite , Piperidinas/uso terapêutico , Pirazóis/uso terapêutico , Quinolinas
14.
Nat Commun ; 12(1): 7164, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887422

RESUMO

Slowpoke (Slo) potassium channels display extraordinarily high conductance, are synergistically activated by a positive transmembrane potential and high intracellular Ca2+ concentrations and are important targets for insecticides and antiparasitic drugs. However, it is unknown how these compounds modulate ion translocation and whether there are insect-specific binding pockets. Here, we report structures of Drosophila Slo in the Ca2+-bound and Ca2+-free form and in complex with the fungal neurotoxin verruculogen and the anthelmintic drug emodepside. Whereas the architecture and gating mechanism of Slo channels are conserved, potential insect-specific binding pockets exist. Verruculogen inhibits K+ transport by blocking the Ca2+-induced activation signal and precludes K+ from entering the selectivity filter. Emodepside decreases the conductance by suboptimal K+ coordination and uncouples ion gating from Ca2+ and voltage sensing. Our results expand the mechanistic understanding of Slo regulation and lay the foundation for the rational design of regulators of Slo and other voltage-gated ion channels.


Assuntos
Calpaína/química , Calpaína/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Transporte Biológico , Cálcio/metabolismo , Calpaína/genética , Microscopia Crioeletrônica , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Drosophila/efeitos dos fármacos , Drosophila/genética , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Indóis/química , Indóis/farmacologia , Potássio/metabolismo
15.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884838

RESUMO

Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human-Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains.


Assuntos
Diamida/química , Proteínas de Insetos/química , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Animais , Sítios de Ligação , Cafeína/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Diamida/metabolismo , Diamida/farmacologia , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacologia , Mariposas/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacologia
16.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884498

RESUMO

Palmitoleic acid (C16:1n7) has been identified as a regulator of physiological cardiac hypertrophy. In the present study, we aimed to investigate the molecular pathways involved in C16:1n7 responses in primary murine cardiomyocytes (PCM) and a mouse model of isoproterenol (ISO)-induced cardiac damage. PCMs were stimulated with C16:1n7 or a vehicle. Afterwards, RNA sequencing was performed using an Illumina HiSeq sequencer. Confirmatory analysis was performed in PCMs and HL-1 cardiomyocytes. For an in vivo study, 129 sv mice were orally treated with a vehicle or C16:1n7 for 22 days. After 5 days of pre-treatment, the mice were injected with ISO (25 mg/kg/d s. c.) for 4 consecutive days. Cardiac phenotyping was performed using echocardiography. In total, 129 genes were differentially expressed in PCMs stimulated with C16:1n7, including Angiopoietin-like factor 4 (Angptl4) and Pyruvate Dehydrogenase Kinase 4 (Pdk4). Both Angptl4 and Pdk4 are proxisome proliferator-activated receptor α/δ (PPARα/δ) target genes. Our in vivo results indicated cardioprotective and anti-fibrotic effects of C16:1n7 application in mice. This was associated with the C16:1n7-dependent regulation of the cardiac PPAR-specific signaling pathways. In conclusion, our experiments demonstrated that C16:1n7 might have protective effects on cardiac fibrosis and inflammation. Our study may help to develop future lipid-based therapies for catecholamine-induced cardiac damage.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiotônicos/farmacologia , Catecolaminas/toxicidade , Ácidos Graxos Monoinsaturados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR delta/metabolismo , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , PPAR alfa/genética , PPAR delta/genética
17.
J Am Heart Assoc ; 10(23): e023131, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34779224

RESUMO

Background Degenerative aortic valve (AoV) disease and resulting aortic stenosis are major clinical health problems. Murine models of valve disease are rare, resulting in a translational knowledge gap on underlying mechanisms, functional consequences, and potential therapies. Naïve New Zealand obese (NZO) mice were recently found to have a dramatic decline of left ventricular (LV) function at early age. Therefore, we aimed to identify the underlying cause of reduced LV function in NZO mice. Methods and Results Cardiac function and pulmonary hemodynamics of NZO and age-matched C57BL/6J mice were monitored by serial echocardiographic examinations. AoVs in NZO mice demonstrated extensive thickening, asymmetric aortic leaflet formation, and cartilaginous transformation of the valvular stroma. Doppler echocardiography of the aorta revealed increased peak velocity profiles, holodiastolic flow reversal, and dilatation of the ascending aorta, consistent with aortic stenosis and regurgitation. Compensated LV hypertrophy deteriorated to decompensated LV failure and remodeling, as indicated by increased LV mass, interstitial fibrosis, and inflammatory cell infiltration. Elevated LV pressures in NZO mice were associated with lung congestion and cor pulmonale, evident as right ventricular dilatation, decreased right ventricular function, and increased mean right ventricular systolic pressure, indicative for the development of pulmonary hypertension and ultimately right ventricular failure. Conclusions NZO mice demonstrate as a novel murine model to spontaneously develop degenerative AoV disease, aortic stenosis, and the associated end organ damages of both ventricles and the lung. Closely mimicking the clinical scenario of degenerative AoV disease, the model may facilitate a better mechanistic understanding and testing of novel treatment strategies in degenerative AoV disease.


Assuntos
Valvopatia Aórtica , Animais , Valvopatia Aórtica/patologia , Estenose da Valva Aórtica , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Nova Zelândia
18.
iScience ; 24(11): 103314, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34805785

RESUMO

Cardiolipin (CL) is a major cardiac mitochondrial phospholipid maintaining regular mitochondrial morphology and function in cardiomyocytes. Cardiac CL production includes its biosynthesis and a CL remodeling process. Here we studied the impact of CL biosynthesis and the enzyme cardiolipin synthase (CLS) on cardiac function. CLS and cardiac CL species were significantly downregulated in cardiomyocytes following catecholamine-induced cardiac damage in mice, accompanied by increased oxygen consumption rates, signs of oxidative stress, and mitochondrial uncoupling. RNAi-mediated cardiomyocyte-specific knockdown of CLS in Drosophila melanogaster resulted in marked cardiac dilatation, severe impairment of systolic performance, and slower diastolic filling velocity assessed by fluorescence-based heart imaging. Finally, we showed that CL72:8 is significantly decreased in cardiac samples from patients with heart failure with reduced ejection fraction (HFrEF). In summary, we identified CLS as a regulator of cardiac function. Considering the cardiac depletion of CL species in HFrEF, pharmacological targeting of CLS may be a promising therapeutic approach.

19.
Curr Opin Pharmacol ; 60: 249-254, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482212

RESUMO

Cardiometabolic disorders, such as diabetes, obesity, or metabolic syndrome, are often considered as key comorbidities, leading to the development of different forms of cardiovascular diseases such as heart failure or diabetic cardiomyopathy. Although the causal relationship between the pathophysiological status of white adipose tissue (WAT) and cardiac lipotoxicity is still elusive, elevated lipolytic rate in WAT has been demonstrated to participate in the overall augmentation of plasma lipid levels, as observed in most of the patients suffering from heart failure. In the present overview, we discuss current therapeutic approaches, as well as new treatment options targeting lipolysis and cardiac lipid metabolism in different forms of heart failure and diabetic cardiomyopathy.


Assuntos
Tecido Adiposo , Doenças Cardiovasculares , Tecido Adiposo/metabolismo , Doenças Cardiovasculares/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipólise , Obesidade/tratamento farmacológico , Obesidade/metabolismo
20.
Pharmacol Res ; 172: 105859, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461222

RESUMO

During the recent 30 years, there has been a dramatic increase in knowledge about the role of aldosterone and the mineralocorticoid receptor (MR) in the pathophysiology of cardiovascular (CV) and kidney diseases. The scientific perspective on the aldosterone/MR ensemble extended from a previously renal epithelial-centered focus on sodium-potassium exchange to a broader view as systemic modulators of extracellular matrix, inflammation and fibrosis. Spironolactone was launched as the first antagonist of aldosterone 27 years before the MR was cloned. It was classified as a potassium-sparing diuretic, based on its initial clinical characterization as a diuretic and its preferred activity to compensate for the potassium loss induced by loop diuretics when used in combination. The second steroidal MR antagonist was eplerenone which was discovered at a time when the role of aldosterone and MR in cardiac fibrosis was rediscovered. The constraint of developing potentially life-threatening hyperkalaemia when used in combination with other inhibitors of the renin-angiotensin-system (RAS) in patients with reduced kidney function initiated extensive research and development activities with the goal to identify novel nonsteroidal MR antagonists with an improved benefit-risk ratio. Here we summarize major current clinical trials with MRAs in different CV and renal diseases. Addition of the nonsteroidal MRA finerenone to optimal RAS blockade recently reduced CV and kidney outcomes in two large phase III trials in patients with chronic kidney disease (CKD) and type 2 diabetes (T2D). We provide an outlook on further opportunities for combination therapy of nonsteroidal MRA finerenone with RAS inhibitors and sodium-glucose cotransporter-2 inhibitors (SGLT2i).


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Nefropatias/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Aldosterona/metabolismo , Animais , Quimioterapia Combinada , Humanos , Receptores de Mineralocorticoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA