Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 289(46): 31751-31764, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25266719

RESUMO

The replication-dependent histone genes are the only metazoan genes whose messenger RNA (mRNA) does not terminate with a poly(A) tail at the 3'-end. Instead, the histone mRNAs display a stem-loop structure at their 3'-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. Here we report that exposure to arsenic, a carcinogenic metal, decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Notably, arsenic exposure dramatically increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. The polyadenylated H3.1 mRNA induced by arsenic was not susceptible to normal degradation that occurs at the end of S phase, resulting in continued presence into mitosis, increased total H3.1 mRNA, and increased H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic exposure may contribute to arsenic-induced carcinogenesis.


Assuntos
Arsênio/química , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Linhagem Celular Tumoral , Cromossomos/ultraestrutura , Dano ao DNA , Epigênese Genética/efeitos dos fármacos , Células HEK293 , Histonas/química , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Mitose , Poliadenilação , Ligação Proteica , Fase S/efeitos dos fármacos
2.
Cancer Epidemiol Biomarkers Prev ; 22(2): 261-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23195993

RESUMO

BACKGROUND: Occupational exposure to nickel (Ni) is associated with an increased risk of lung and nasal cancers. Ni compounds exhibit weak mutagenic activity, alter the cell's epigenetic homeostasis, and activate signaling pathways. However, changes in gene expression associated with Ni exposure have only been investigated in vitro. This study was conducted in a Chinese population to determine whether occupational exposure to Ni was associated with differential gene expression profiles in the peripheral blood mononuclear cells (PBMC) of Ni-refinery workers when compared with referents. METHODS: Eight Ni-refinery workers and ten referents were selected. PBMC RNA was extracted and gene expression profiling was conducted using Affymetrix exon arrays. Differentially expressed genes (DEG) between both groups were identified in a global analysis. RESULTS: There were a total of 2,756 DEGs in the Ni-refinery workers relative to the referents [false discovery rate (FDR) adjusted P < 0.05] with 770 upregulated genes and 1,986 downregulated genes. DNA repair and epigenetic genes were significantly overrepresented (P < 0.0002) among the DEGs. Of 31 DNA repair genes, 29 were repressed in the Ni-refinery workers and 2 were overexpressed. Of the 16 epigenetic genes, 12 were repressed in the Ni-refinery workers and 4 were overexpressed. CONCLUSIONS: The results of this study indicate that occupational exposure to Ni is associated with alterations in gene expression profiles in PBMCs of subjects. IMPACT: Gene expression may be useful in identifying patterns of deregulation that precede clinical identification of Ni-induced cancers.


Assuntos
Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Leucócitos Mononucleares/efeitos dos fármacos , Metalurgia , Níquel/efeitos adversos , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Doenças Profissionais/epidemiologia , Exposição Ocupacional/análise , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Risco
3.
Toxicol Appl Pharmacol ; 258(2): 166-75, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22079256

RESUMO

Hexavalent chromium [Cr(VI)] is a human carcinogen that results in the generation of reactive oxygen species (ROS) and a variety of DNA lesions leading to cell death. Epigallocatechin-3-gallate (EGCG), the major polyphenol present in green tea, possesses potent antioxidative activity capable of protecting normal cells from various stimuli-induced oxidative stress and cell death. Here we demonstrated that co-treatment with EGCG protected human normal bronchial epithelial BEAS-2B cells from Cr(VI)-induced cell death in a dose-dependent manner. Cr(VI) induces apoptosis as the primary mode of cell death. Co-treatment of BEAS-2B cells with EGCG dose-dependently suppressed Cr(VI)-induced apoptosis. Fluorescence microscopic analyses and quantitative measurement revealed that EGCG significantly decreased intracellular levels of ROS induced by Cr(VI) exposure. Using a well-established K(+)/SDS precipitation assay, we further showed that EGCG was able to dose-dependently reduce DNA-protein cross-links (DPC), lesions that could be partially attributed to Cr(VI)-induced oxidative stress. Finally, analyses of Affymetrix microarray containing 28,869 well-annotated genes revealed that, among the 3412 genes changed more than 1.5-fold by Cr(VI) treatment, changes of 2404 genes (70%) were inhibited by pretreatment of EGCG. Real-time PCR confirmed the induction of 3 genes involved in cell death and apoptosis by Cr(VI), which was eliminated by EGCG. In contrast, Cr(VI) reduced the expression of 3 genes related to cellular defense, and this reduction was inhibited by EGCG. Our results indicate that EGCG protects BEAS-2B cells from Cr(VI)-induced cytotoxicity presumably by scavenging ROS and modulating a subset of genes. EGCG, therefore, might serve as a potential chemopreventive agent against Cr(VI) carcinogenesis.


Assuntos
Antioxidantes/farmacologia , Carcinógenos Ambientais/toxicidade , Catequina/análogos & derivados , Cromo/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/patologia , Catequina/administração & dosagem , Catequina/farmacologia , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
4.
PLoS One ; 6(8): e22764, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829649

RESUMO

Liprin-α4 was strongly induced following nickel (II) chloride exposure in a variety of cell types including BEAS-2B, A549, BEP2D and BL41 cells. Liprin-α4, a member of the Liprin alpha family, has seven isoforms but only three of these variants were detected in BEAS-2B cells (004, 201 and 202). The level of Liprin-α4 variants 201 and 004 were highly increased in BEAS-2B cells in response to nickel. We showed that Liprin-α4 bound directly to the cytoplasmic region of RPTP-LAR (receptor protein tyrosine phosphatase-leukocyte antigen-related receptor F). The cytoplasmic region of RPTP-LAR contains two phosphatase domains but only the first domain shows activity. The second domain interacts with other proteins. The phosphatase activity was increased both following nickel treatment and also in the presence of nickel ions in cell extracts. Liprin-α4 knock-down lines with decreased expression of Liprin-α4 variants 004 and 201 exhibited greater nickel toxicity compared to controls. The RPTP-LAR phosphatase activity was only slightly increased in a Liprin-α4 knock-down line. Liprin-α4 appeared necessary for the nickel induced tyrosine phosphatase activity. The presence of Liprin-α4 and nickel increased tyrosine phosphatase activity that reduced the global levels of tyrosine phosphorylation in the cell.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Níquel/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Linhagem Celular , Humanos , Fosforilação , Tirosina/metabolismo
5.
PLoS One ; 6(3): e17728, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21455298

RESUMO

Occupational exposure to nickel compounds has been associated with lung and nasal cancers. We have previously shown that exposure of the human lung adenocarcinoma A549 cells to NiCl(2) for 24 hr significantly increased global levels of trimethylated H3K4 (H3K4me3), a transcriptional activating mark that maps to the promoters of transcribed genes. To further understand the potential epigenetic mechanism(s) underlying nickel carcinogenesis, we performed genome-wide mapping of H3K4me3 by chromatin immunoprecipitation and direct genome sequencing (ChIP-seq) and correlated with transcriptome genome-wide mapping of RNA transcripts by massive parallel sequencing of cDNA (RNA-seq). The effect of NiCl(2) treatment on H3K4me3 peaks within 5,000 bp of transcription start sites (TSSs) on a set of genes highly induced by nickel in both A549 cells and human peripheral blood mononuclear cells were analyzed. Nickel exposure increased the level of H3K4 trimethylation in both the promoters and coding regions of several genes including CA9 and NDRG1 that were increased in expression in A549 cells. We have also compared the extent of the H3K4 trimethylation in the absence and presence of formaldehyde crosslinking and observed that crosslinking of chromatin was required to observe H3K4 trimethylation in the coding regions immediately downstream of TSSs of some nickel-induced genes including ADM and IGFBP3. This is the first genome-wide mapping of trimethylated H3K4 in the promoter and coding regions of genes induced after exposure to NiCl(2). This study may provide insights into the epigenetic mechanism(s) underlying the carcinogenicity of nickel compounds.


Assuntos
Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Epigênese Genética/efeitos dos fármacos , Histonas/efeitos dos fármacos , Histonas/metabolismo , Níquel/farmacologia , Antígenos de Neoplasias/genética , Anidrase Carbônica IX , Anidrases Carbônicas/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Epigênese Genética/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética
6.
Mol Plant ; 3(3): 594-602, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20410255

RESUMO

Plants, as sessile organisms, need to sense and adapt to heterogeneous environments and have developed sophisticated responses by changing their cellular physiology, gene regulation, and genome stability. Recent work demonstrated heritable stress effects on the control of genome stability in plants--a phenomenon that was suggested to be of epigenetic nature. Here, we show that temperature and UV-B stress cause immediate and heritable changes in the epigenetic control of a silent reporter gene in Arabidopsis. This stress-mediated release of gene silencing correlated with pronounced alterations in histone occupancy and in histone H3 acetylation but did not involve adjustments in DNA methylation. We observed transmission of stress effects on reporter gene silencing to non-stressed progeny, but this effect was restricted to areas consisting of a small number of cells and limited to a few non-stressed progeny generations. Furthermore, stress-induced release of gene silencing was antagonized and reset during seed aging. The transient nature of this phenomenon highlights the ability of plants to restrict stress-induced relaxation of epigenetic control mechanisms, which likely contributes to safeguarding genome integrity.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Epigênese Genética/genética , Acetilação , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA/fisiologia , Inativação Gênica/fisiologia , Histonas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA