Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Org Chem ; 88(7): 4309-4316, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36921217

RESUMO

Hole-transport materials (HTMs) based on triarylamine derivatives play important roles in organic electronics applications including organic light-emitting diodes and perovskite solar cells. For some applications, triarylamine derivatives bearing appropriate binding groups have been used to functionalize surfaces, while others have been incorporated as side chains into polymers to manipulate the processibility of HTMs for device applications. However, only a few approaches have been used to incorporate a single surface-binding group or polymerizable group into triarylamine materials. Here, we report that Rh-carbenoid chemistry can be used to insert carboxylic esters and norbornene functional groups into sp2 C-H bonds of a simple triarylamine and a 4,4'-bis(diarylamino)biphenyl, respectively. The norbenene-functionalized monomer was polymerized by ring-opening metathesis; the electrochemical, optical, and charge-transport properties of these materials were similar to those of related materials synthesized by conventional means. This method potentially offers straightforward access to a diverse range of HTMs with different functional groups.

2.
J Phys Chem A ; 126(41): 7480-7490, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36215098

RESUMO

2,5-Diphenyl-1,3,4-oxadiazole has been widely used as an acceptor portion of donor-acceptor fluorophores that exhibit thermally activated delayed fluorescence (TADF), but analogous 2-alkyl-5-phenyl-1,3,4-oxadiazoles have been much less widely investigated. Here the properties of carbazole-substituted 2-methyl-5-phenyl-1,3,4-oxadiazoles are compared to those of their 2,5-diphenyl analogues. The fluorescence of each of the former compounds is blue-shifted by ca. 50-100 meV relative to that in the latter, while similar estimated values of the singlet-triplet energy separation (ΔEST) are maintained. In particular, 2-methyl-5-(penta(9-carbazolyl)phenyl)-1,3,4-oxadiazole and 2-methyl-5-(penta(3,6-di-tert-butyl-9-carbazolyl)phenyl)-1,3,4-oxadiazole exhibit solution fluorescence maxima of 466 and 485 nm and estimated ΔEST values of 0.12 and 0.03 eV, respectively. In both cases the reverse intersystem crossing (RISC) rates inferred from their solution fluorescence behavior are over twice those of the corresponding 2-phenyl derivatives. Organic light-emitting diodes (OLEDs) in which the 2-methyl derivatives are used as emitters yield external quantum efficiency (EQE) values of up to 23%. OLEDs with 2-methyl-5-(penta(9-carbazolyl)phenyl)-1,3,4-oxadiazole and 2-methyl-5-(penta(3,6-di-tert-butyl-9-carbazolyl)phenyl)-1,3,4-oxadiazole emitters show reduced efficiency rolloff at high current densities relative to their 2-phenyl counterparts, the latter exhibiting an EQE of 16% at 1000 cd m-2.

3.
J Phys Chem B ; 126(40): 8094-8101, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36170664

RESUMO

Insoluble electrically n-doped fullerene-containing films have been obtained by thermal annealing of a fullerene compound and a 1,3-dimethyl-2,3-dihydro-1H-benzo[d]imidazole n-dopant moiety, both of which are functionalized with a 7-butoxybenzocyclobutene group. The covalent tethering and electrical doping reactions are studied by mass spectrometry as well as electron paramagnetic resonance. Optical absorption spectra on BBCB-N-DMBI-H-doped BBCBP indicate films heated at 150 °C for 10 min are unaffected by immersion for 10 min in ortho-dichlorobenzene. Although films containing a 10 mol % loading of the dopant showed electrical conductivity values of 1.1 × 10-5 ± 3.4 × 10-7 S cm-1 prior to heating, the thermal insolubilization process led to values around two orders-of-magnitude lower. However, the thermal insolubilization also leads to immobilization of the dopant molecule and the corresponding cation, reducing their ability to diffuse into an adjacent layer of a stronger electron acceptor.

4.
Sci Adv ; 7(51): eabj6565, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910518

RESUMO

Stretchable optoelectronics made of elastomeric semiconductors could enable the integration of intelligent systems with soft materials, such as those of the biological world. Organic semiconductors and photodiodes have been engineered to be elastomeric; however, for photodetector applications, it remains a challenge to identify an elastomeric bulk heterojunction (e-BHJ) photoactive layer that combines a low Young's modulus and a high strain at break that yields organic photodiodes with low electronic noise values and high photodetector performance. Here, a blend of an elastomer, a donor-like polymer, and an acceptor-like molecule yields a skin-like e-BHJ with a Young's modulus of a few megapascals, comparable to values of human tissues, and a high strain at break of 189%. Elastomeric organic photodiodes based on e-BHJ photoactive layers maintain low electronic noise current values in the tens of femtoamperes range and noise equivalent power values in the tens of picowatts range under at least 60% strain.

5.
ACS Appl Mater Interfaces ; 13(19): 23260-23267, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33957756

RESUMO

Molecular p-type electrical dopants have been proven useful to fine-tune the optoelectronic properties of bulk organic semiconductors and their interfaces. Here, the volume in polymer films and its role in solution-based electrical p-type doping using phosphomolybdic acid (PMA) are studied. The polymer film volume was controlled using two approaches. One is based on heating both the PMA solution and the film prior to immersion. The second is based on coating the polymer film with a liquid blend that contains the PMA solution and a swelling solvent. 31P NMR and FTIR experiments indicate that the Keggin structure appears to be preserved throughout the doping process. Results show that increasing the polymer volume facilitates the infiltration of the PMA Keggin structure, which results in an increased electrical p-type doping level.

6.
Science ; 370(6517): 698-701, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154137

RESUMO

Silicon photodiodes are the foundation of light-detection technology; yet their rigid structure and limited area scaling at low cost hamper their use in several emerging applications. A detailed methodology for the characterization of organic photodiodes based on polymeric bulk heterojunctions reveals the influence that charge-collecting electrodes have on the electronic noise at low frequency. The performance of optimized organic photodiodes is found to rival that of low-noise silicon photodiodes in all metrics within the visible spectral range, except response time, which is still video-rate compatible. Solution-processed organic photodiodes offer several design opportunities exemplified in a biometric monitoring application that uses ring-shaped, large-area, flexible, organic photodiodes with silicon-level performance.

7.
Nat Mater ; 19(7): 702-704, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32152563
8.
ACS Appl Mater Interfaces ; 11(13): 12693-12698, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30835427

RESUMO

Thermally activated delayed fluorescent (TADF) materials are advantageous as emitters in organic light-emitting diodes (OLEDs) due to their ability to utilize all excited states formed by charge recombination for light emission, potentially leading to 100% internal quantum efficiency. As in conventional fluorescent or phosphorescent OLEDs, TADF emitters are commonly doped at a relatively low concentration in a host matrix. However, increasing evidence suggests that balanced ambipolar transport properties and small aggregation-induced fluorescence quenching allow TADF emitters to be used alone in so-called host-free OLEDs. Here, we report host-free OLEDs in which the emissive layers (EMLs) consist solely of a yellow-green-emitting TADF compound, 5,5'-(2,3,5,6-tetra(carbazol-9-yl)-1,4-phenylene)bis(2-(4-( tert-butyl)phenyl)-1,3,4-oxadiazole), TCZPBOX. Devices with this host-free EML yield a maximum external quantum efficiency (EQE) of 21%, current efficacy (CE) of 73 cd/A, and power efficacy (PE) of 79 lm/W at a luminance of 10 cd/m2. At a high luminance of 10,000 cd/m2, a high EQE of 13% is maintained. A maximum luminance of 120,000 cd/m2 is reached at an applied voltage of 9.8 V. When TCZPBOX was doped in the host 2,6-di(carbazol-9-yl)-pyridine (PYD2) at 40 wt %, the device yielded a maximum EQE of 28%, CE of 94 cd/A, and PE of 100 lm/W at 10 cd/m2.

10.
ACS Appl Mater Interfaces ; 10(14): 11995-12004, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29601173

RESUMO

We report on two π-conjugated donor-acceptor-donor (D-A-D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir-Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on the LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D-A-D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.

11.
Sci Adv ; 4(1): eaao1705, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29340301

RESUMO

Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (µc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V-1 s-1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies.

12.
ACS Omega ; 3(11): 14918-14923, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458157

RESUMO

2-(4-(9,9-Dimethylacridin-10(9H)-yl)phenyl)-5-phenyl-1,3,4-oxadiazole has an energy difference between the lowest excited singlet and triplet states (ΔE ST) of ca. 0.24 eV. Introduction of two electronegative fluorine atoms onto the acceptor portion of the molecule to give 2-(4-(9,9-dimethylacridin-10(9H)-yl)-3,5-difluorophenyl)-5-phenyl-1,3,4-oxadiazole lowers the energy of the singlet emission with a negligible effect on the corresponding triplet energy, leading to a donor-acceptor compound with decreased ΔE ST of ca. 0.13 eV that displays thermally activated delayed fluorescence. Organic light-emitting diodes fabricated using the latter compound display high EQEmax of 21.9% at a luminance of 10 cd/m2 and sky-blue emission, however, they suffer from a large efficiency roll-off at increased luminance.

13.
Nat Mater ; 16(4): 474-480, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27918568

RESUMO

Solution-based electrical doping protocols may allow more versatility in the design of organic electronic devices; yet, controlling the diffusion of dopants in organic semiconductors and their stability has proven challenging. Here we present a solution-based approach for electrical p-doping of films of donor conjugated organic semiconductors and their blends with acceptors over a limited depth with a decay constant of 10-20 nm by post-process immersion into a polyoxometalate solution (phosphomolybdic acid, PMA) in nitromethane. PMA-doped films show increased electrical conductivity and work function, reduced solubility in the processing solvent, and improved photo-oxidative stability in air. This approach is applicable to a variety of organic semiconductors used in photovoltaics and field-effect transistors. PMA doping over a limited depth of bulk heterojunction polymeric films, in which amine-containing polymers were mixed in the solution used for film formation, enables single-layer organic photovoltaic devices, processed at room temperature, with power conversion efficiencies up to 5.9 ± 0.2% and stable performance on shelf-lifetime studies at 60 °C for at least 280 h.

14.
Nano Lett ; 16(12): 7829-7835, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960502

RESUMO

Organometal halide perovskites have shown excellent optoelectronic properties and have been used to demonstrate a variety of semiconductor devices. Colorful solar cells are desirable for photovoltaic integration in buildings and other aesthetically appealing applications. However, the realization of colorful perovskite solar cells is challenging because of their broad and large absorption coefficient that commonly leads to cells with dark-brown colors. Herein, for the first time, we report a simple and efficient strategy to achieve colorful perovskite solar cells by using the transparent conducting polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) as a top electrode and simultaneously as an spectrally selective antireflection coating. Vivid colors across the visible spectrum are attained by engineering optical interference effects among the transparent PEDOT:PSS polymer electrode, the hole-transporting layer and the perovskite layer. The colored perovskite solar cells display power conversion efficiency values from 12.8 to 15.1% (from red to blue) when illuminated from the FTO glass side and from 11.6 to 13.8% (from red to blue) when illuminated from the PEDOT:PSS side. The new approach provides an advanced solution for fabricating colorful perovskite solar cells with easy processing and high efficiency.

15.
ACS Appl Mater Interfaces ; 8(44): 29872-29876, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27760296

RESUMO

We report on top-gate OFETs with a bilayer gate dielectric comprising an Al2O3 /HfO2 nanolaminate layer grown by atomic layer deposition and an amorphous fluoro-polymer layer (CYTOP). Top-gate OFETs display average carrier mobility values of 0.9 ± 0.2 cm2/(V s) and threshold voltage values of -1.9 ± 0.5 V and high operational and environmental stability under different environmental conditions such as damp air at 50 °C (80% relative humidity) and prolonged immersion in water at a temperature up to 95 °C.

16.
ACS Appl Mater Interfaces ; 8(37): 24744-52, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27579570

RESUMO

We report on the reduction of contact resistance in solution-processed TIPS-pentacene (6,13-bis(triisopropylsilylethynyl)pentacene) and PTAA (poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]) top-gate bottom-contact organic field-effect transistors (OFETs) by using different contact-modification strategies. The study compares the contact resistance values in devices that comprise Au source/drain electrodes either treated with 2,3,4,5,6-pentafluorothiophenol (PFBT), or modified with an evaporated thin layer of the metal-organic molecular dopant molybdenum tris-[1,2-bis(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd)3), or modified with a thin layer of the oxide MoO3. An improved performance is observed in devices modified with Mo(tfd)3 or MoO3 as compared to devices in which Au electrodes are modified with PFBT. We discuss the origin of the decrease in contact resistance in terms of increase of the work function of the modified Au electrodes, Fermi-level pinning effects, and decrease of bulk resistance by electrically doping the organic semiconductor films in the vicinity of the source/drain electrodes.

17.
Rev Sci Instrum ; 87(3): 033902, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036786

RESUMO

In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) and plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN(x) layer combined with an ALD Al2O3/HfO(x) nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10(-5) g/m(2) day and intrinsic WVTR of 1.41 × 10(-4) g/m(2) day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10(-4) g/m(2) day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.

18.
Chem Commun (Camb) ; 52(19): 3825-7, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26867140

RESUMO

Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is shown to be simultaneously cross-linked and p-doped when immersed into a phosphomolybdic acid solution, yielding conductive films with low solubility that can withstand the solution processing of subsequent photoactive layers. Such a modified PCDTBT film serves to improve hole collection and limit carrier recombination in organic solar cells.


Assuntos
Reagentes de Ligações Cruzadas/química , Molibdênio/química , Ácidos Fosfóricos/química , Polímeros/química , Semicondutores , Energia Solar
19.
Angew Chem Int Ed Engl ; 54(29): 8490-3, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26037165

RESUMO

We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition.


Assuntos
Materiais Biocompatíveis/química , Seda/química , Seda/ultraestrutura , Animais , Concentração de Íons de Hidrogênio
20.
ACS Appl Mater Interfaces ; 7(8): 4804-8, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25651811

RESUMO

We report on the performance and the characterization of top-gate organic field-effect transistors (OFETs), comprising a bilayer gate dielectric of CYTOP/Al2O3 and a solution-processed semiconductor layer made of a blend of TIPS-pentacene:PTAA, fabricated on recyclable cellulose nanocrystal-glycerol (CNC/glycerol) substrates. These OFETs exhibit low operating voltage, low threshold voltage, an average field-effect mobility of 0.11 cm(2)/(V s), and good shelf and operational stability in ambient conditions. To improve the operational stability in ambient a passivation layer of Al2O3 is grown by atomic layer deposition (ALD) directly onto the CNC/glycerol substrates. This layer protects the organic semiconductor layer from moisture and other chemicals that can either permeate through or diffuse out of the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA