Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Amino Acids ; 55(7): 891-902, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37227510

RESUMO

Organotellurium compounds are being well researched as potential candidates for their functional roles in therapeutic and clinical biology. Here, we report the in vitro anticancer and antibacterial activities of an AS101 analog, cyclic zwitterionic organotellurolate (IV) compound 2 [Te-{CH2CH(NH3+)COO}(Cl)3]. Different concentrations of compound 2 were exposed to fibroblast L929 and breast cancer MCF-7 cell lines to study its effect on cell viability. The fibroblast cells with good viability confirmed the biocompatibility, and compound 2 also was less hemolytic on RBCs. A cytotoxic effect on MCF-7 breast cancer cell line investigated compound 2 to be anti-cancerous with IC50 value of 2.86 ± 0.02 µg/mL. The apoptosis was confirmed through the cell cycle phase arrest of the organotellurolate (IV) compound 2. Examination of the antibacterial potency compound 2 was done based on the agar disk diffusion, minimum inhibitory concentration, and time-dependent assay for the Gram-positive Bacillus subtilis and Gram-negative Pseudomonas putida. For both bacterial strains, tests were performed with the concentration range of 3.9-500 µg/mL, and the minimum inhibition concentration value was found to be 125 µg/mL. The time-dependent assay suggested the bactericidal activity of organotellurolate (IV) compound, 2 against the bacterial strains.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Etilenos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
Artigo em Inglês | MEDLINE | ID: mdl-34825510

RESUMO

Parkinson's disease (PD), a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons, which results in the loss of motor activity. In the management of PD, the primary aim is to increase the dopamine content in the brain either by delivering the precursors of dopamine or by inhibiting the molecules responsible for dopamine degradation. Due to the low bioavailability, a higher dosage of drugs needs to be administered repeatedly for achieving the desired therapeutic effect. This repeated high dose not only increases the severe side effects but also produces tolerance in the body. Often, direct administration of drugs fails to ameliorate the symptoms as the unmodified drugs cannot cross the blood-brain barrier (BBB). Nanotherapeutic is at the forefront of the alternative treatment against the central nervous system (CNS) disorders due to the ability to circumvents the BBB. Here, all the available treatments for PD have been discussed with their limitation. The current trends of nanotherapeutics for PD have been explored. Suitability and formulation prospects for nasal delivery have been analyzed in detail to explore new research scope. The most effective approach is the nose-to-brain delivery for targeting drugs directly to the brain. This delivery bypasses the BBB and concentrates more drugs at the target site. Thus, developments of nose-to-brain delivery of nanoformulations explicit the new scope to manage PD better. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Doença de Parkinson , Barreira Hematoencefálica , Encéfalo , Dopamina/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Doença de Parkinson/tratamento farmacológico
3.
J Med Chem ; 64(17): 12774-12789, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34432457

RESUMO

The development of multivalent sialic acid-based inhibitors active against a variety of influenza A virus (IAV) strains has been hampered by high genetic and structural variability of the targeted viral hemagglutinin (HA). Here, we addressed this challenge by employing sialylated polyglycerols (PGs). Efficacy of prototypic PGs was restricted to a narrow spectrum of IAV strains. To understand this restriction, we selected IAV mutants resistant to a prototypic multivalent sialylated PG by serial passaging. Resistance mutations mapped to the receptor binding site of HA, which was accompanied by altered receptor binding profiles of mutant viruses as detected by glycan array analysis. Specifying the inhibitor functionalization to 2,6-α-sialyllactose (SL) and adjusting the linker yielded a rationally designed inhibitor covering an extended spectrum of inhibited IAV strains. These results highlight the importance of integrating virological data with chemical synthesis and structural data for the development of sialylated PGs toward broad anti-influenza compounds.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Glicerol/química , Glicerol/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Hemaglutininas/química , Hemaglutininas/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Estrutura Molecular , Mutação , Ligação Proteica , Relação Estrutura-Atividade
4.
Front Med Technol ; 3: 676025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047929

RESUMO

Protein therapeutic formulations are being widely explored as multifunctional nanotherapeutics. Challenges in ensuring susceptibility and efficacy of nanoformulation still prevail owing to various interactions with biological fluids before reaching the target site. Smart polymers with the capability of masking drugs, ease of chemical modification, and multi-stimuli responsiveness can assist controlled delivery. An active moiety like therapeutic protein has started to be known as an important biological formulation with a diverse medicinal prospect. The delivery of proteins and peptides with high target specificity has however been tedious, due to their tendency to aggregate formation in different environmental conditions. Proteins due to high chemical reactivity and poor bioavailability are being researched widely in the field of nanomedicine. Clinically, multiple nano-based formulations have been explored for delivering protein with different carrier systems. A biocompatible and non-toxic polymer-based delivery system serves to tailor the polymer or drug better. Polymers not only aid delivery to the target site but are also responsible for proper stearic orientation of proteins thus protecting them from internal hindrances. Polymers have been shown to conjugate with proteins through covalent linkage rendering stability and enhancing therapeutic efficacy prominently when dealing with the systemic route. Here, we present the recent developments in polymer-protein/drug-linked systems. We aim to address questions by assessing the properties of the conjugate system and optimized delivery approaches. Since thorough characterization is the key aspect for technology to enter into the market, correlating laboratory research with commercially available formulations will also be presented in this review. By examining characteristics including morphology, surface properties, and functionalization, we will expand different hybrid applications from a biomaterial stance applied in in vivo complex biological conditions. Further, we explore understanding related to design criteria and strategies for polymer-protein smart nanomedicines with their potential prophylactic theranostic applications. Overall, we intend to highlight protein-drug delivery through multifunctional smart polymers.

5.
Chemistry ; 24(72): 19373-19385, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30295350

RESUMO

Herein, the chemical synthesis and binding analysis of functionalizable rigid and flexible core trivalent sialosides bearing oligoethylene glycol (OEG) spacers interacting with spike proteins of influenza A virus (IAV) X31 is described. Although the flexible Tris-based trivalent sialosides achieved micromolar binding constants, a trivalent binder based on a rigid adamantane core dominated flexible tripodal compounds with micromolar binding and hemagglutination inhibition constants. Simulation studies indicated increased conformational penalties for long OEG spacers. Using a systematic approach with molecular modeling and simulations as well as biophysical analysis, these findings emphasize on the importance of the scaffold rigidity and the challenges associated with the spacer length optimization.


Assuntos
Vírus da Influenza A/efeitos dos fármacos , Ácidos Siálicos/química , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Ligação Proteica , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA