Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38529501

RESUMO

Inducible pluripotent stem cells (iPSCs) derived from patient samples have significantly enhanced our ability to model neurological diseases. Comparative studies of dopaminergic (DA) neurons differentiated from iPSCs derived from siblings with Gaucher disease discordant for parkinsonism provides a valuable avenue to explore genetic modifiers contributing to GBA1-associated parkinsonism in disease-relevant cells. However, such studies are often complicated by the inherent heterogeneity in differentiation efficiency among iPSC lines derived from different individuals. To address this technical challenge, we devised a selection strategy to enrich dopaminergic (DA) neurons expressing tyrosine hydroxylase (TH). A neomycin resistance gene (neo) was inserted at the C-terminus of the TH gene following a T2A self-cleavage peptide, placing its expression under the control of the TH promoter. This allows for TH+ DA neuron enrichment through geneticin selection. This method enabled us to generate comparable, high-purity DA neuron cultures from iPSC lines derived from three sisters that we followed for over a decade: one sibling is a healthy individual, and the other two have Gaucher disease (GD) with GBA1 genotype N370S/c.203delC+R257X (p.N409S/c.203delC+p.R296X). Notably, the younger sister with GD later developed Parkinson disease (PD). A comprehensive analysis of these high-purity DA neurons revealed that although GD DA neurons exhibited decreased levels of glucocerebrosidase (GCase), there was no substantial difference in GCase protein levels or lipid substrate accumulation between DA neurons from the GD and GD/PD sisters, suggesting that the PD discordance is related to of other genetic modifiers.

2.
BMC Bioinformatics ; 24(1): 102, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941541

RESUMO

BACKGROUND: Epigenetic modification of chromatin plays a pivotal role in regulating gene expression during cell differentiation. The scale and complexity of epigenetic data pose significant challenges for biologists to identify the regulatory events controlling cell differentiation. RESULTS: To reduce the complexity, we developed a package, called Snapshot, for clustering and visualizing candidate cis-regulatory elements (cCREs) based on their epigenetic signals during cell differentiation. This package first introduces a binarized indexing strategy for clustering the cCREs. It then provides a series of easily interpretable figures for visualizing the signal and epigenetic state patterns of the cCREs clusters during the cell differentiation. It can also use different hierarchies of cell types to highlight the epigenetic history specific to any particular cell lineage. We demonstrate the utility of Snapshot using data from a consortium project for ValIdated Systematic IntegratiON (VISION) of epigenomic data in hematopoiesis. CONCLUSION: The package Snapshot can identify all distinct clusters of genomic locations with unique epigenetic signal patterns during cell differentiation. It outperforms other methods in terms of interpreting and reproducing the identified cCREs clusters. The package of Snapshot is available at GitHub: https://github.com/guanjue/Snapshot .


Assuntos
Cromatina , Epigenômica , Epigenômica/métodos , Diferenciação Celular/genética , Epigênese Genética , Análise por Conglomerados
3.
Nat Immunol ; 24(1): 186-199, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536106

RESUMO

Most studies of adaptive immunity to SARS-CoV-2 infection focus on peripheral blood, which may not fully reflect immune responses at the site of infection. Using samples from 110 children undergoing tonsillectomy and adenoidectomy during the COVID-19 pandemic, we identified 24 samples with evidence of previous SARS-CoV-2 infection, including neutralizing antibodies in serum and SARS-CoV-2-specific germinal center and memory B cells in the tonsils and adenoids. Single-cell B cell receptor (BCR) sequencing indicated virus-specific BCRs were class-switched and somatically hypermutated, with overlapping clones in the two tissues. Expanded T cell clonotypes were found in tonsils, adenoids and blood post-COVID-19, some with CDR3 sequences identical to previously reported SARS-CoV-2-reactive T cell receptors (TCRs). Pharyngeal tissues from COVID-19-convalescent children showed persistent expansion of germinal center and antiviral lymphocyte populations associated with interferon (IFN)-γ-type responses, particularly in the adenoids, and viral RNA in both tissues. Our results provide evidence for persistent tissue-specific immunity to SARS-CoV-2 in the upper respiratory tract of children after infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Criança , Pandemias , Imunidade Adaptativa , Tonsila Palatina , Anticorpos Antivirais
4.
Res Sq ; 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35350206

RESUMO

SARS-CoV-2 infection triggers adaptive immune responses from both T and B cells. However, most studies focus on peripheral blood, which may not fully reflect immune responses in lymphoid tissues at the site of infection. To evaluate both local and systemic adaptive immune responses to SARS-CoV-2, we collected peripheral blood, tonsils, and adenoids from 110 children undergoing tonsillectomy/adenoidectomy during the COVID-19 pandemic and found 24 with evidence of prior SARS-CoV-2 infection, including detectable neutralizing antibodies against multiple viral variants. We identified SARS-CoV-2-specific germinal center (GC) and memory B cells; single cell BCR sequencing showed that these virus-specific B cells were class-switched and somatically hypermutated, with overlapping clones in the adenoids and tonsils. Oropharyngeal tissues from COVID-19-convalescent children showed persistent expansion of GC and anti-viral lymphocyte populations associated with an IFN-γ-type response, with particularly prominent changes in the adenoids, as well as evidence of persistent viral RNA in both tonsil and adenoid tissues of many participants. Our results show robust, tissue-specific adaptive immune responses to SARS-CoV-2 in the upper respiratory tract of children weeks to months after acute infection, providing evidence of persistent localized immunity to this respiratory virus.

5.
Nat Commun ; 13(1): 805, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145086

RESUMO

T follicular helper (Tfh) cells provide signals to initiate and maintain the germinal center (GC) reaction and are crucial for the generation of robust, long-lived antibody responses, but how the GC microenvironment affects Tfh cells is not well understood. Here we develop an in vivo T cell-intrinsic CRISPR-knockout screen to evaluate Tfh and Th1 cells in an acute viral infection model to identify regulators of Tfh cells in their physiological setting. Using a screen of druggable-targets, alongside genetic, transcriptomic and cellular analyses, we identify a function of HIF-1α in suppressing mTORC1-mediated and Myc-related pathways, and provide evidence that VHL-mediated degradation of HIF-1α is required for Tfh development; an expanded in vivo CRISPR screen reveals multiple components of these pathways that regulate Tfh versus Th1 cells, including signaling molecules, cell-cycle regulators, nutrient transporters, metabolic enzymes and autophagy mediators. Collectively, our data serve as a resource for studying Tfh versus Th1 decisions, and implicate the VHL-HIF-1α axis in fine-tuning Tfh generation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Animais , Formação de Anticorpos , Diferenciação Celular/imunologia , Expressão Gênica , Técnicas de Inativação de Genes , Centro Germinativo/imunologia , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imunidade Humoral/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Viroses/imunologia
6.
Blood Adv ; 5(23): 4949-4962, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34492681

RESUMO

RUNX1 is essential for the generation of hematopoietic stem cells (HSCs). Runx1-null mouse embryos lack definitive hematopoiesis and die in mid-gestation. However, although zebrafish embryos with a runx1 W84X mutation have defects in early definitive hematopoiesis, some runx1W84X/W84X embryos can develop to fertile adults with blood cells of multilineages, raising the possibility that HSCs can emerge without RUNX1. Here, using 3 new zebrafish runx1-/- lines, we uncovered the compensatory mechanism for runx1-independent hematopoiesis. We show that, in the absence of a functional runx1, a cd41-green fluorescent protein (GFP)+ population of hematopoietic precursors still emerge from the hemogenic endothelium and can colonize the hematopoietic tissues of the mutant embryos. Single-cell RNA sequencing of the cd41-GFP+ cells identified a set of runx1-/--specific signature genes during hematopoiesis. Significantly, gata2b, which normally acts upstream of runx1 for the generation of HSCs, was increased in the cd41-GFP+ cells in runx1-/- embryos. Interestingly, genetic inactivation of both gata2b and its paralog gata2a did not affect hematopoiesis. However, knocking out runx1 and any 3 of the 4 alleles of gata2a and gata2b abolished definitive hematopoiesis. Gata2 expression was also upregulated in hematopoietic cells in Runx1-/- mice, suggesting the compensatory mechanism is conserved. Our findings indicate that RUNX1 and GATA2 serve redundant roles for HSC production, acting as each other's safeguard.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA2/metabolismo , Hemangioblastos , Proteínas de Peixe-Zebra/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fator de Transcrição GATA2/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Camundongos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Nat Immunol ; 20(7): 890-901, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209400

RESUMO

Progenitor-like CD8+ T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including T cell-specific transcription factor 1 (TCF1), but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing the single-cell transcriptomes and epigenetic profiles of CD8+ T cells responding to acute and chronic viral infections, we found that progenitor-like CD8+ T cells became distinct from memory precursor cells before the peak of the T cell response. We discovered a coexpression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursor cells. Moreover, thymocyte selection-associated high mobility group box protein TOX (TOX) promoted the persistence of antiviral CD8+ T cells and was required for the programming of progenitor-like CD8+ T cells. Thus, long-term CD8+ T cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Infecções/etiologia , Análise de Célula Única , Animais , Biomarcadores , Imunoprecipitação da Cromatina , Epigênese Genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , Infecções/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Fatores de Tempo , Transcriptoma
8.
Elife ; 62017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28395729

RESUMO

The blood-brain barrier is essential for the proper homeostasis and function of the CNS, but its mechanism of function is poorly understood. Perivascular cells surrounding brain blood vessels are thought to be important for blood-brain barrier establishment, but their roles are not well defined. Here, we describe a novel perivascular cell population closely associated with blood vessels on the zebrafish brain. Based on similarities in their morphology, location, and scavenger behavior, these cells appear to be the zebrafish equivalent of cells variably characterized as Fluorescent Granular Perithelial cells (FGPs), perivascular macrophages, or 'Mato Cells' in mammals. Despite their macrophage-like morphology and perivascular location, zebrafish FGPs appear molecularly most similar to lymphatic endothelium, and our imaging studies suggest that these cells emerge by differentiation from endothelium of the optic choroidal vascular plexus. Our findings provide the first report of a perivascular cell population in the brain derived from vascular endothelium.


Assuntos
Vasos Sanguíneos/citologia , Barreira Hematoencefálica/citologia , Encéfalo/citologia , Células Endoteliais/citologia , Peixe-Zebra , Animais , Diferenciação Celular
9.
Haematologica ; 102(4): 656-665, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28011901

RESUMO

Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylceramide-laden macrophages resulting from impaired digestion of aged erythrocytes or apoptotic leukocytes. Studies of macrophages from patients with type 1 Gaucher disease with genotypes N370S/N370S, N370S/L444P or N370S/c.84dupG revealed that Gaucher macrophages have impaired efferocytosis resulting from reduced levels of p67phox and Rab7. The decreased Rab7 expression leads to impaired fusion of phagosomes with lysosomes. Moreover, there is defective translocation of p67phox to phagosomes, resulting in reduced intracellular production of reactive oxygen species. These factors contribute to defective deposition and clearance of apoptotic cells in phagolysosomes, which may have an impact on the inflammatory response and contribute to the organomegaly and inflammation seen in patients with Gaucher disease.


Assuntos
Doença de Gaucher/genética , Doença de Gaucher/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Fagocitose/genética , Fagocitose/imunologia , Biomarcadores , Citofagocitose/genética , Citofagocitose/imunologia , Genótipo , Glucosilceramidase/genética , Humanos , Imuno-Histoquímica , Mutação , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/genética , Explosão Respiratória/imunologia
10.
Sci Immunol ; 1(6)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28018990

RESUMO

During chronic viral infections and in cancer, T cells become dysfunctional, a state known as T cell exhaustion. Although it is well recognized that memory CD8 T cells account for the persistence of CD8 T cell immunity after acute infection, how exhausted T cells persist remains less clear. Using chronic infection with lymphocytic choriomeningitis virus clone 13 and tumor samples, we demonstrate that CD8 T cells differentiate into a less exhausted TCF1high and a more exhausted TCF1low population. Virus-specific TCF1high CD8 T cells, which resemble T follicular helper (TFH) cells, persist and recall better than do TCF1low cells and act as progenitor cells to replenish TCF1low cells. We show that TCF1 is both necessary and sufficient to support this progenitor-like CD8 subset, whereas cell-intrinsic type I interferon signaling suppresses their differentiation. Accordingly, cell-intrinsic TCF1 deficiency led to a loss of these progenitor CD8 T cells, sharp contraction of virus-specific T cells, and uncontrolled viremia. Mechanistically, TCF1 repressed several pro-exhaustion factors and induced Bcl6 in CD8 T cells, which promoted the progenitor fate. We propose that the TCF1-Bcl6 axis counteracts type I interferon to repress T cell exhaustion and maintain T cell stemness, which is critical for persistent antiviral CD8 T cell responses in chronic infection. These findings provide insight into the requirements for persistence of T cell immune responses in the face of exhaustion and suggest mechanisms by which effective T cell-mediated immunity may be enhanced during chronic infections and cancer.

11.
J Med Genet ; 53(5): 318-29, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27095636

RESUMO

BACKGROUND: Laminins are heterotrimeric complexes, consisting of α, ß and γ subunits that form a major component of basement membranes and extracellular matrix. Laminin complexes have different, but often overlapping, distributions and functions. METHODS: Under our clinical protocol, NCT00068224, we have performed extensive clinical and neuropsychiatric phenotyping, neuroimaging and molecular analysis in patients with laminin α1 (LAMA1)-associated lamininopathy. We investigated the consequence of mutations in LAMA1 using patient-derived fibroblasts and neuronal cells derived from neuronal stem cells. RESULTS: In this paper we describe individuals with biallelic mutations in LAMA1, all of whom had the cerebellar dysplasia, myopia and retinal dystrophy, in addition to obsessive compulsive traits, tics and anxiety. Patient-derived fibroblasts have impaired adhesion, reduced migration, abnormal morphology and increased apoptosis due to impaired activation of Cdc42, a member of the Rho family of GTPases that is involved in cytoskeletal dynamics. LAMA1 knockdown in human neuronal cells also showed abnormal morphology and filopodia formation, supporting the importance of LAMA1 in neuronal migration, and marking these cells potentially useful tools for disease modelling and therapeutic target discovery. CONCLUSION: This paper broadens the phenotypes associated with LAMA1 mutations. We demonstrate that LAMA1 deficiency can lead to alteration in cytoskeletal dynamics, which may invariably lead to alteration in dendrite growth and axonal formation. Estimation of disease prevalence based on population studies in LAMA1 reveals a prevalence of 1-20 in 1 000 000. TRIAL REGISTRATION NUMBER: NCT00068224.


Assuntos
Doenças Cerebelares/metabolismo , Laminina/genética , Mutação , Miopia/metabolismo , Transtorno Obsessivo-Compulsivo/metabolismo , Adulto , Adesão Celular , Movimento Celular , Doenças Cerebelares/genética , Doenças Cerebelares/fisiopatologia , Criança , Feminino , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Masculino , Miopia/genética , Miopia/fisiopatologia , Neurônios/metabolismo , Neurônios/fisiologia , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/fisiopatologia , Linhagem , Distrofias Retinianas/genética , Distrofias Retinianas/metabolismo , Distrofias Retinianas/fisiopatologia , Síndrome , Transtornos de Tique/genética , Transtornos de Tique/metabolismo , Transtornos de Tique/fisiopatologia , Adulto Jovem , Proteína cdc42 de Ligação ao GTP
12.
Nat Commun ; 7: 10857, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26936133

RESUMO

Th9 cells produce interleukin (IL)-9, a cytokine implicated in allergic asthma and autoimmunity. Here we show that Itk, a mediator of T cell receptor signalling required for Th2 immune responses and the development of asthma, is a positive regulator of Th9 differentiation. In a model of allergic lung disease, Itk-deficient mice show reduced pulmonary inflammation and IL-9 production by T cells and innate lymphoid type 2 cells (ILC2), despite normal early induction of ILC2s. In vitro, Itk(-/-) CD4(+) T cells do not produce IL-9 and have reduced levels of IRF4 (Interferon Regulator Factor 4), a critical transcription factor for effector T cell function. Both IL-9 and IRF4 expression are rescued by either IL-2 or constitutively active STAT5, but not NFATc1. STAT5 binds the Irf4 promoter, demonstrating one mechanism by which IL-2 rescues weakly activated T cells. Itk inhibition also reduces IL-9 expression by human T cells, implicating ITK as a key regulator of Th9 induction.


Assuntos
Diferenciação Celular/fisiologia , Fatores Reguladores de Interferon/metabolismo , Interleucina-2/metabolismo , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Linfócitos T CD4-Positivos , Feminino , Regulação da Expressão Gênica/fisiologia , Fatores Reguladores de Interferon/genética , Interleucina-2/genética , Pneumopatias/induzido quimicamente , Masculino , Camundongos , Camundongos Knockout , Papaína/toxicidade , Proteínas Quinases/genética , Proteínas Tirosina Quinases/genética
13.
PLoS One ; 10(10): e0139729, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26448644

RESUMO

The Wiskott-Aldrich syndrome (WAS) is a rare X-linked primary immunodeficiency characterized by recurrent infections, thrombocytopenia, eczema, and high incidence of malignancy and autoimmunity. The cellular mechanisms underlying autoimmune complications in WAS have been extensively studied; however, they remain incompletely defined. We investigated the characteristics of IL-10-producing CD19+CD1dhighCD5+ B cells (CD1dhighCD5+ Breg) obtained from Was gene knockout (WKO) mice and found that their numbers were significantly lower in these mice compared to wild type (WT) controls. Moreover, we found a significant age-dependent reduction of the percentage of IL-10-expressing cells in WKO CD1dhighCD5+ Breg cells as compared to age-matched WT control mice. CD1dhighCD5+ Breg cells from older WKO mice did not suppress the in vitro production of inflammatory cytokines from activated CD4+ T cells. Interestingly, CD1dhighCD5+ Breg cells from older WKO mice displayed a basal activated phenotype which may prevent normal cellular responses, among which is the expression of IL-10. These defects may contribute to the susceptibility to autoimmunity with age in patients with WAS.


Assuntos
Envelhecimento , Linfócitos B Reguladores/imunologia , Síndrome de Wiskott-Aldrich/patologia , Animais , Antígenos CD19/metabolismo , Antígenos CD1d/metabolismo , Linfócitos B Reguladores/citologia , Linfócitos B Reguladores/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD5/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Interleucina-10/análise , Masculino , Camundongos , Camundongos Knockout , Síndrome de Wiskott-Aldrich/metabolismo
14.
J Exp Med ; 212(8): 1185-202, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26150473

RESUMO

Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD.


Assuntos
Adenilato Quinase/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Leucopenia/enzimologia , Leucopenia/fisiopatologia , Estresse Oxidativo/fisiologia , Células-Tronco Pluripotentes/fisiologia , Imunodeficiência Combinada Severa/enzimologia , Imunodeficiência Combinada Severa/fisiopatologia , Laranja de Acridina , Adenilato Quinase/deficiência , Animais , Antioxidantes/farmacologia , Apoptose/fisiologia , Compostos Azo , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Biologia Computacional , Primers do DNA/genética , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Dados de Sequência Molecular , Naftalenos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Peixe-Zebra
15.
Hum Genet ; 134(7): 775-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939664

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a pediatric myeloproliferative neoplasm that arises from malignant transformation of the stem cell compartment and results in increased production of myeloid cells. Somatic and germline variants in CBL (Casitas B-lineage lymphoma proto-oncogene) have been associated with JMML. We report an incompletely penetrant CBL Y371C mutation discovered by whole-exome sequencing in three individuals with JMML in a large pedigree with 35 years of follow-up. The Y371 residue is highly evolutionarily conserved among CBL orthologs and paralogs. In silico bioinformatics prediction programs suggested that the Y371C mutation is highly deleterious. Protein structural modeling revealed that the Y371C mutation abrogated the ability of the CBL protein to adopt a conformation that is required for ubiquitination. Clinically, the three mutation-positive JMML individuals exhibited variable clinical courses; in two out of three, primary hematologic abnormalities persisted into adulthood with minimal clinical symptoms. The penetrance of the CBL Y371C mutation was 30% for JMML and 40% for all leukemia. Of the 8 mutation carriers in the family with available photographs, only one had significant dysmorphic features; we found no evidence of a clinical phenotype consistent with a "CBL syndrome". Although CBL Y371C has been previously reported in familial JMML, we are the first group to follow a complete pedigree harboring this mutation for an extended period, revealing additional information about this variant's penetrance, function and natural history.


Assuntos
Mutação em Linhagem Germinativa , Leucemia Mielomonocítica Juvenil/genética , Mutação de Sentido Incorreto , Linhagem , Proteínas Proto-Oncogênicas c-cbl/genética , Ubiquitinação/genética , Adolescente , Adulto , Criança , Pré-Escolar , Exoma , Feminino , Seguimentos , Humanos , Lactente , Masculino , Modelos Moleculares , Penetrância , Estrutura Terciária de Proteína , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-cbl/química
16.
J Exp Med ; 211(3): 529-43, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24534190

RESUMO

A proper balance between Th17 and T regulatory cells (Treg cells) is critical for generating protective immune responses while minimizing autoimmunity. We show that the Tec family kinase Itk (IL2-inducible T cell kinase), a component of T cell receptor (TCR) signaling pathways, influences this balance by regulating cross talk between TCR and cytokine signaling. Under both Th17 and Treg cell differentiation conditions, Itk(-/-) CD4(+) T cells develop higher percentages of functional FoxP3(+) cells, associated with increased sensitivity to IL-2. Itk(-/-) CD4(+) T cells also preferentially develop into Treg cells in vivo. We find that Itk-deficient T cells exhibit reduced TCR-induced phosphorylation of mammalian target of rapamycin (mTOR) targets, accompanied by downstream metabolic alterations. Surprisingly, Itk(-/-) cells also exhibit reduced IL-2-induced mTOR activation, despite increased STAT5 phosphorylation. We demonstrate that in wild-type CD4(+) T cells, TCR stimulation leads to a dose-dependent repression of Pten. However, at low TCR stimulation or in the absence of Itk, Pten is not effectively repressed, thereby uncoupling STAT5 phosphorylation and phosphoinositide-3-kinase (PI3K) pathways. Moreover, Itk-deficient CD4(+) T cells show impaired TCR-mediated induction of Myc and miR-19b, known repressors of Pten. Our results demonstrate that Itk helps orchestrate positive feedback loops integrating multiple T cell signaling pathways, suggesting Itk as a potential target for altering the balance between Th17 and Treg cells.


Assuntos
Citocinas/metabolismo , Imunidade Celular/imunologia , Proteínas Tirosina Quinases/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/imunologia , Proteínas de Ligação a DNA/genética , Citometria de Fluxo , Vetores Genéticos/genética , Immunoblotting , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oligonucleotídeos/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptor Cross-Talk/imunologia , Retroviridae , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo
17.
Mol Genet Metab ; 110(1-2): 188-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23850077

RESUMO

Mutations in individuals with the lysosomal storage disorder Niemann-Pick disease, type C1 (NPC1) are heterogeneous, not localized to specific protein domains, and not correlated to time of onset or disease severity. We demonstrate direct correlation of the time of neurological symptom onset with the severity of lysosomal defects in NPC1 patient-derived fibroblasts. This is a novel assay for NPC1 individuals that may be predictive of NPC1 disease progression and broadly applicable to other lysosomal disorders.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Doença de Niemann-Pick Tipo C/genética , Adolescente , Adulto , Transporte Biológico/genética , Células Cultivadas , Criança , Pré-Escolar , Progressão da Doença , Feminino , Fibroblastos , Humanos , Lactente , Recém-Nascido , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/genética , Lisossomos/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Estrutura Terciária de Proteína
18.
Blood ; 119(6): 1511-21, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22160378

RESUMO

KIT mutations are the most common secondary mutations in inv(16) acute myeloid leukemia (AML) patients and are associated with poor prognosis. It is therefore important to verify that KIT mutations cooperate with CBFB-MYH11, the fusion gene generated by inv(16), for leukemogenesis. Here, we transduced wild-type and conditional Cbfb-MYH11 knockin (KI) mouse bone marrow (BM) cells with KIT D816V/Y mutations. KIT transduction caused massive BM Lin(-) cell death and fewer colonies in culture that were less severe in the KI cells. D816Y KIT but not wild-type KIT enhanced proliferation in Lin(-) cells and led to more mixed lineage colonies from transduced KI BM cells. Importantly, 60% and 80% of mice transplanted with KI BM cells expressing D816V or D816Y KIT, respectively, died from leukemia within 9 months, whereas no control mice died. Results from limiting dilution transplantations indicate higher frequencies of leukemia-initiating cells in the leukemia expressing mutated KIT. Signaling pathway analysis revealed that p44/42 MAPK and Stat3, but not AKT and Stat5, were strongly phosphorylated in the leukemia cells. Finally, leukemia cells carrying KIT D816 mutations were sensitive to the kinase inhibitor PKC412. Our data provide clear evidence for cooperation between mutated KIT and CBFB-MYH11 during leukemogenesis.


Assuntos
Leucemia/genética , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Western Blotting , Transplante de Medula Óssea , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Leucemia/metabolismo , Leucemia/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia
19.
Blood ; 117(24): 6608-11, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21515824

RESUMO

Wiskott-Aldrich syndrome (WAS) is an inherited immunodeficiency characterized by high incidence of autoantibody-mediated autoimmune complications. Such a feature has been associated with defective suppressor activity of WAS protein-deficient, naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells on responder T cells. However, it remains to be established whether the altered B-cell tolerance reported in WAS patients and Was knockout (WKO) mice is secondary to abnormalities in the direct suppression of B-cell function by nTreg cells or to impaired regulation of T-helper function. Because activated nTreg cells are known to induce granzyme B-mediated B-cell killing, we decided to evaluate the regulatory capabilities of WKO nTregs on B lymphocytes. We found that preactivated WKO nTreg cells failed to effectively suppress B-cell proliferation and that such a defect was associated with reduced killing of B cells and significantly decreased degranulation of granzyme B. Altogether, these results provide additional mechanistic insights into the loss of immune tolerance in WAS.


Assuntos
Linfócitos B/fisiologia , Proliferação de Células , Linfócitos T Reguladores/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Animais , Linfócitos B/metabolismo , Morte Celular/genética , Morte Celular/imunologia , Degranulação Celular/genética , Degranulação Celular/imunologia , Células Cultivadas , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Granzimas/metabolismo , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/deficiência , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
20.
Blood ; 115(7): 1433-43, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20007544

RESUMO

It is known that CBFB-MYH11, the fusion gene generated by inversion of chromosome 16 in human acute myeloid leukemia, is causative for oncogenic transformation. However, the mechanism by which CBFB-MYH11 initiates leukemogenesis is not clear. Previously published reports showed that CBFB-MYH11 dominantly inhibits RUNX1 and CBFB, and such inhibition has been suggested as the mechanism for leukemogenesis. Here we show that Cbfb-MYH11 caused Cbfb/Runx1 repression-independent defects in both primitive and definitive hematopoiesis. During primitive hematopoiesis, Cbfb-MYH11 delayed differentiation characterized by sustained expression of Gata2, Il1rl1, and Csf2rb, a phenotype not found in Cbfb and Runx1 knockout mice. Expression of Cbfb-MYH11 in the bone marrow induced the accumulation of abnormal progenitor-like cells expressing Csf2rb in preleukemic mice. The expression of all 3 genes was detected in most human and murine CBFB-MYH11(+) leukemia samples. Interestingly, Cbfb-MYH11(+) preleukemic progenitors and leukemia-initiating cells did not express Csf2rb, although the majority of leukemia cells in our Cbfb-MYH11 knockin mice were Csf2rb(+). Therefore Csf2rb can be used as a negative selection marker to enrich preleukemic progenitor cells and leukemia-initiating cells from Cbfb-MYH11 mice. These results suggest that Cbfb/Runx1 repression-independent activities contribute to leukemogenesis by Cbfb-MYH11.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Animais , Apoptose/fisiologia , Biomarcadores , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta Comum dos Receptores de Citocinas/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação Leucêmica da Expressão Gênica , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/patologia , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Fusão Oncogênica/genética , Fenótipo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA