Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nitric Oxide ; 52: 1-15, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26529478

RESUMO

We developed a mass transport model for a parallel-plate flow chamber apparatus to predict the concentrations of nitric oxide (NO) and adenine nucleotides (ATP, ADP) produced by cultured endothelial cells (ECs) and investigated how the net rates of production, degradation, and mass transport for these three chemical species vary with changes in wall shear stress (τw). These simulations provide an improved understanding of experimental results obtained with parallel-plate flow chambers and allows quantitative analysis of the relationship between τw, adenine nucleotide concentrations, and NO produced by ECs. Experimental data obtained after altering ATP and ADP concentrations with apyrase were analyzed to quantify changes in the rate of NO production (RNO). The effects of different isoforms of apyrase on ATP and ADP concentrations and nucleotide-dependent changes in RNO could be predicted with the model. A decrease in ATP was predicted with apyrase, but an increase in ADP was simulated due to degradation of ATP. We found that a simple proportional relationship relating a component of RNO to the sum of ATP and ADP provided a close match to the fitted curve for experimentally measured changes in RNO with apyrase. Estimates for the proportionality constant ranged from 0.0067 to 0.0321 µM/s increase in RNO per nM nucleotide concentration, depending on which isoform of apyrase was modeled, with the largest effect of nucleotides on RNO at low τw (<6 dyn/cm(2)).


Assuntos
Nucleotídeos de Adenina/biossíntese , Células Endoteliais/metabolismo , Modelos Biológicos , Óxido Nítrico/biossíntese , Estresse Mecânico , Humanos
2.
Nitric Oxide ; 23(4): 335-42, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20719252

RESUMO

Nitric oxide (NO) produced by the endothelium is involved in the regulation of vascular tone. Decreased NO production or availability has been linked to endothelial dysfunction in hypercholesterolemia and hypertension. Shear stress-induced NO release is a well-established phenomenon, yet the cellular mechanisms of this response are not completely understood. Experimental limitations have hindered direct, real-time measurements of NO under flow conditions. We have overcome these challenges with a new design for a parallel-plate flow chamber. The chamber consists of two compartments, separated by a Transwell® membrane, which isolates a NO recording electrode located in the upper compartment from flow effects. Endothelial cells are grown on the bottom of the membrane, which is inserted into the chamber flush with the upper plate. We demonstrate for the first time direct real-time NO measurements from endothelial cells with controlled variations in shear stress. Step changes in shear stress from 0.1 dyn/cm(2) to 6, 10, or 20 dyn/cm(2) elicited a transient decrease in NO followed by an increase to a new steady state. An analysis of NO transport suggests that the initial decrease is due to the increased removal rate by convection as flow increases. Furthermore, the rate at which the NO concentration approaches the new steady state is related to the time-dependent cellular response rather than transport limitations of the measurement configuration. Our design offers a method for studying the kinetics of the signaling mechanisms linking NO production with shear stress as well as pathological conditions involving changes in NO production or availability.


Assuntos
Células Endoteliais/metabolismo , Óxido Nítrico/biossíntese , Resistência ao Cisalhamento , Animais , Aorta/citologia , Bovinos , Células Cultivadas , Eletrodos , Desenho de Equipamento , Citometria de Fluxo/instrumentação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA