Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Nat Commun ; 15(1): 4359, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777835

RESUMO

Cystine-knot peptides (CKPs) are naturally occurring peptides that exhibit exceptional chemical and proteolytic stability. We leveraged the CKP carboxypeptidase A1 inhibitor as a scaffold to construct phage-displayed CKP libraries and subsequently screened these collections against HTRA1, a trimeric serine protease implicated in age-related macular degeneration and osteoarthritis. The initial hits were optimized by using affinity maturation strategies to yield highly selective and potent picomolar inhibitors of HTRA1. Crystal structures, coupled with biochemical studies, reveal that the CKPs do not interact in a substrate-like manner but bind to a cryptic pocket at the S1' site region of HTRA1 and abolish catalysis by stabilizing a non-competent active site conformation. The opening and closing of this cryptic pocket is controlled by the gatekeeper residue V221, and its movement is facilitated by the absence of a constraining disulfide bond that is typically present in trypsin fold serine proteases, thereby explaining the remarkable selectivity of the CKPs. Our findings reveal an intriguing mechanism for modulating the activity of HTRA1, and highlight the utility of CKP-based phage display platforms in uncovering potent and selective inhibitors against challenging therapeutic targets.


Assuntos
Domínio Catalítico , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Peptídeos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Biblioteca de Peptídeos , Cristalografia por Raios X , Ligação Proteica , Cistina/química , Cistina/metabolismo , Modelos Moleculares
2.
PLoS One ; 19(3): e0300135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547109

RESUMO

Peptides present an alternative modality to immunoglobulin domains or small molecules for developing therapeutics to either agonize or antagonize cellular pathways associated with diseases. However, peptides often suffer from poor chemical and physical stability, limiting their therapeutic potential. Disulfide-constrained peptides (DCP) are naturally occurring and possess numerous desirable properties, such as high stability, that qualify them as drug-like scaffolds for peptide therapeutics. DCPs contain loop regions protruding from the core of the molecule that are amenable to peptide engineering via direct evolution by use of phage display technology. In this study, we have established a robust platform for the discovery of peptide therapeutics using various DCPs as scaffolds. We created diverse libraries comprising seven different DCP scaffolds, resulting in an overall diversity of 2 x 1011. The effectiveness of this platform for functional hit discovery has been extensively evaluated, demonstrating a hit rate comparable to that of synthetic antibody libraries. By utilizing chemically synthesized and in vitro folded peptides derived from selections of phage displayed DCP libraries, we have successfully generated functional inhibitors targeting the HtrA1 protease. Through affinity maturation strategies, we have transformed initially weak binders against Notch2 with micromolar Kd values to high-affinity ligands in the nanomolar range. This process highlights a viable hit-to-lead progression. Overall, our platform holds significant potential to greatly enhance the discovery of peptide therapeutics.


Assuntos
Dissulfetos , Peptídeos , Peptídeos/farmacologia , Peptídeos/química , Biblioteca de Peptídeos , Peptídeo Hidrolases
3.
Mol Oncol ; 18(3): 547-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37872868

RESUMO

Hepsin, a type II transmembrane serine protease, is commonly overexpressed in prostate and breast cancer. The hepsin protein is stabilized by the Ras-MAPK pathway, and, downstream, this protease regulates the degradation of extracellular matrix components and activates growth factor pathways, such as the hepatocyte growth factor (HGF) and transforming growth factor beta (TGFß) pathway. However, how exactly active hepsin promotes cell proliferation machinery to sustain tumor growth is not fully understood. Here, we show that genetic deletion of the gene encoding hepsin (Hpn) in a WAP-Myc model of aggressive MYC-driven breast cancer inhibits tumor growth in the primary syngrafted sites and the growth of disseminated tumors in the lungs. The suppression of tumor growth upon loss of hepsin was accompanied by downregulation of TGFß and EGFR signaling together with a reduction in epidermal growth factor receptor (EGFR) protein levels. We further demonstrate in 3D cultures of patient-derived breast cancer explants that both basal TGFß signaling and EGFR protein expression are inhibited by neutralizing antibodies or small-molecule inhibitors of hepsin. The study demonstrates a role for hepsin as a regulator of cell proliferation and tumor growth through TGFß and EGFR pathways, warranting consideration of hepsin as a potential indirect upstream target for therapeutic inhibition of TGFß and EGFR pathways in cancer.


Assuntos
Neoplasias da Mama , Fator de Crescimento Epidérmico , Serina Endopeptidases , Humanos , Masculino , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta
4.
Nat Commun ; 13(1): 5222, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064790

RESUMO

The trimeric serine protease HTRA1 is a genetic risk factor associated with geographic atrophy (GA), a currently untreatable form of age-related macular degeneration. Here, we describe the allosteric inhibition mechanism of HTRA1 by a clinical Fab fragment, currently being evaluated for GA treatment. Using cryo-EM, X-ray crystallography and biochemical assays we identify the exposed LoopA of HTRA1 as the sole Fab epitope, which is approximately 30 Å away from the active site. The cryo-EM structure of the HTRA1:Fab complex in combination with molecular dynamics simulations revealed that Fab binding to LoopA locks HTRA1 in a non-competent conformational state, incapable of supporting catalysis. Moreover, grafting the HTRA1-LoopA epitope onto HTRA2 and HTRA3 transferred the allosteric inhibition mechanism. This suggests a conserved conformational lock mechanism across the HTRA family and a critical role of LoopA for catalysis, which was supported by the reduced activity of HTRA1-3 upon LoopA deletion or perturbation. This study reveals the long-range inhibition mechanism of the clinical Fab and identifies an essential function of the exposed LoopA for activity of HTRA family proteases.


Assuntos
Serina Peptidase 1 de Requerimento de Alta Temperatura A , Degeneração Macular , Serina Endopeptidases , Cristalografia por Raios X , Epitopos , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
5.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35743244

RESUMO

Histones are cationic nuclear proteins that are essential for the structure and functions of eukaryotic chromatin. However, extracellular histones trigger inflammatory responses and contribute to death in sepsis by unknown mechanisms. We recently reported that inflammasome activation and pyroptosis trigger coagulation activation through a tissue-factor (TF)-dependent mechanism. We used a combination of various deficient mice to elucidate the molecular mechanism of histone-induced coagulation. We showed that histones trigger coagulation activation in vivo, as evidenced by coagulation parameters and fibrin deposition in tissues. However, histone-induced coagulopathy was neither dependent on intracellular inflammasome pathways involving caspase 1/11 and gasdermin D (GSDMD), nor on cell surface receptor TLR2- and TLR4-mediated host immune response, as the deficiency of these genes in mice did not protect against histone-induced coagulopathy. The incubation of histones with macrophages induced lytic cell death and phosphatidylserine (PS) exposure, which is required for TF activity, a key initiator of coagulation. The neutralization of TF diminished the histone-induced coagulation. Our findings revealed lytic cell death as a novel mechanism of histone-induced coagulation activation and thrombosis.


Assuntos
Coagulação Intravascular Disseminada , Animais , Coagulação Intravascular Disseminada/etiologia , Histonas , Inflamassomos/metabolismo , Camundongos , Piroptose , Tromboplastina/metabolismo
7.
Cardiovasc Res ; 118(10): 2367-2384, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34352109

RESUMO

AIMS: Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances platelet responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we explore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF. We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo. METHODS AND RESULTS: In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial infarction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI), 1.73 (1.25-2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted HR (95% CI) 1.75 (1.25-2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset (n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08-2.69)]. These collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine). CONCLUSION: Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by targeted non-lethal inhibition of gut microbial choline TMA-lyase.


Assuntos
Liases , Trombose , Animais , Colina , Células Endoteliais/metabolismo , Humanos , Liases/metabolismo , Metilaminas/metabolismo , Metilaminas/toxicidade , Camundongos , Tromboplastina
8.
Commun Biol ; 4(1): 916, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34316015

RESUMO

Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.


Assuntos
Apolipoproteína L1/química , Apolipoproteínas L/química , Domínios Proteicos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Apolipoproteínas L/genética , Apolipoproteínas L/metabolismo , Humanos
9.
Nat Commun ; 11(1): 6435, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353951

RESUMO

Human ß-tryptase, a tetrameric trypsin-like serine protease, is an important mediator of allergic inflammatory responses in asthma. Antibodies generally inhibit proteases by blocking substrate access by binding to active sites or exosites or by allosteric modulation. The bivalency of IgG antibodies can increase potency via avidity, but has never been described as essential for activity. Here we report an inhibitory anti-tryptase IgG antibody with a bivalency-driven mechanism of action. Using biochemical and structural data, we determine that four Fabs simultaneously occupy four exosites on the ß-tryptase tetramer, inducing allosteric changes at the small interface. In the presence of heparin, the monovalent Fab shows essentially no inhibition, whereas the bivalent IgG fully inhibits ß-tryptase activity in a hinge-dependent manner. Our results suggest a model where the bivalent IgG acts akin to molecular pliers, pulling the tetramer apart into inactive ß-tryptase monomers, and may provide an alternative strategy for antibody engineering.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Triptases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sequência de Aminoácidos , Heparina/farmacologia , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Modelos Moleculares , Proteínas Mutantes/química , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Triptases/química
10.
Commun Biol ; 3(1): 687, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214666

RESUMO

Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.


Assuntos
Mastócitos/enzimologia , Serina Proteases/metabolismo , Transferência Adotiva , Animais , Complexo Antígeno-Anticorpo , Regulação Enzimológica da Expressão Gênica , Histamina/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos , Serina Proteases/genética , Serotonina/metabolismo
11.
Biochem Soc Trans ; 48(4): 1323-1336, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32794575

RESUMO

The proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma LDL cholesterol levels by binding to the liver LDL receptor (LDLR) and promoting its degradation. Therefore, PCSK9 has become a compelling new therapeutic target for lipid lowering and the prevention of cardiovascular disease. PCSK9 contains two regions of conformational flexibility, the N-terminal regions of the prodomain and of the catalytic domain. The recognition that the latter region, the so-called P' helix, is able to transition from an α-helical to a disordered state gave rise to new strategies to develop small molecule inhibitors of PCSK9 for lipid lowering. In the ordered state the P' helix is buried in a groove of the PCSK9 catalytic domain located next to the main LDLR binding site. The transition to a disordered state leaves the groove site vacated and accessible for compounds to antagonize LDLR binding. By use of a groove-directed phage display strategy we were able to identify several groove-binding peptides. Based on structural information of PCSK9-peptide complexes, a minimized groove-binding peptide was generated and utilized as an anchor to extend towards the adjacent main LDLR binding site, either by use of a phage-displayed peptide extension library, or by appending organic moieties to yield organo-peptides. Both strategies led to antagonists with pharmacologic activities in cell-based assays. The intricate bipartite mechanism of the potent organo-peptide inhibitors was revealed by structural studies, showing that the core peptide occupies the N-terminal groove, while the organic moiety interacts with the LDLR binding site to create antagonism. These findings validate the PCSK9 groove as an attractive target site and should inspire the development of a new class of small molecule antagonists of PCSK9.


Assuntos
Anticolesterolemiantes/química , LDL-Colesterol/sangue , Desenho de Fármacos , Pró-Proteína Convertase 9/metabolismo , Inibidores de Serina Proteinase/química , Animais , Anticolesterolemiantes/farmacologia , Sítios de Ligação , Humanos , Inibidores de PCSK9 , Pró-Proteína Convertase 9/química , Receptores de LDL/metabolismo , Inibidores de Serina Proteinase/farmacologia
12.
J Am Soc Nephrol ; 31(9): 2065-2082, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32764138

RESUMO

BACKGROUND: Circulating APOL1 lyses trypanosomes, protecting against human sleeping sickness. Two common African gene variants of APOL1, G1 and G2, protect against infection by species of trypanosomes that resist wild-type APOL1. At the same time, the protection predisposes humans to CKD, an elegant example of balanced polymorphism. However, the exact mechanism of APOL1-mediated podocyte damage is not clear, including APOL1's subcellular localization, topology, and whether the damage is related to trypanolysis. METHODS: APOL1 topology in serum (HDL particles) and in kidney podocytes was mapped with flow cytometry, immunoprecipitation, and trypanolysis assays that tracked 170 APOL1 domain-specific monoclonal antibodies. APOL1 knockout podocytes confirmed antibody specificity. RESULTS: APOL1 localizes to the surface of podocytes, with most of the pore-forming domain (PFD) and C terminus of the Serum Resistance Associated-interacting domain (SRA-ID), but not the membrane-addressing domain (MAD), being exposed. In contrast, differential trypanolytic blocking activity reveals that the MAD is exposed in serum APOL1, with less of the PFD accessible. Low pH did not detectably alter the gross topology of APOL1, as determined by antibody accessibility, in serum or on podocytes. CONCLUSIONS: Our antibodies highlighted different conformations of native APOL1 topology in serum (HDL particles) and at the podocyte surface. Our findings support the surface ion channel model for APOL1 risk variant-mediated podocyte injury, as well as providing domain accessibility information for designing APOL1-targeted therapeutics.


Assuntos
Apolipoproteína L1/análise , Membrana Celular/química , Podócitos/química , Animais , Anticorpos/imunologia , Especificidade de Anticorpos , Apolipoproteína L1/sangue , Apolipoproteína L1/química , Apolipoproteína L1/imunologia , Células CHO , Cricetulus , Humanos , Concentração de Íons de Hidrogênio , Podócitos/ultraestrutura , Domínios Proteicos
13.
Proc Natl Acad Sci U S A ; 117(18): 9952-9963, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32345717

RESUMO

Genetic polymorphisms in the region of the trimeric serine hydrolase high-temperature requirement 1 (HTRA1) are associated with increased risk of age-related macular degeneration (AMD) and disease progression, but the precise biological function of HtrA1 in the eye and its contribution to disease etiologies remain undefined. In this study, we have developed an HtrA1-blocking Fab fragment to test the therapeutic hypothesis that HtrA1 protease activity is involved in the progression of AMD. Next, we generated an activity-based small-molecule probe (ABP) to track target engagement in vivo. In addition, we used N-terminomic proteomic profiling in preclinical models to elucidate the in vivo repertoire of HtrA1-specific substrates, and identified substrates that can serve as robust pharmacodynamic biomarkers of HtrA1 activity. One of these HtrA1 substrates, Dickkopf-related protein 3 (DKK3), was successfully used as a biomarker to demonstrate the inhibition of HtrA1 activity in patients with AMD who were treated with the HtrA1-blocking Fab fragment. This pharmacodynamic biomarker provides important information on HtrA1 activity and pharmacological inhibition within the ocular compartment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Anticorpos Anti-Idiotípicos/farmacologia , Atrofia Geográfica/tratamento farmacológico , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Degeneração Macular/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Idoso , Animais , Anticorpos Anti-Idiotípicos/genética , Anticorpos Anti-Idiotípicos/imunologia , Biomarcadores/sangue , Progressão da Doença , Feminino , Predisposição Genética para Doença , Genótipo , Atrofia Geográfica/sangue , Atrofia Geográfica/genética , Atrofia Geográfica/imunologia , Serina Peptidase 1 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Degeneração Macular/sangue , Degeneração Macular/genética , Degeneração Macular/imunologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Proteoma/genética , Proteoma/imunologia , Ratos , Retina/efeitos dos fármacos , Retina/imunologia , Retina/patologia , Bibliotecas de Moléculas Pequenas/farmacologia
15.
ACS Chem Biol ; 15(2): 425-436, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31962046

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) has become an important therapeutic target for lipid lowering, since it regulates low-density lipoprotein cholesterol (LDL-c) levels by binding to liver LDL receptors (LDLR) and effecting their intracellular degradation. However, the development of small molecule inhibitors is hampered by the lack of attractive PCSK9 target sites. We recently discovered helical peptides that are able to bind to a cryptic groove site on PCSK9, which is situated in proximity to the main LDLR binding site. Here, we designed potent bipartite PCSK9 inhibitors by appending organic moieties to a helical groove-binding peptide to reach a hydrophobic pocket in the proximal LDLR binding region. The ultimately designed 1-amino-4-phenylcyclohexane-1-carbonyl extension improved the peptide affinity by >100-fold, yielding organo-peptide antagonists that potently inhibited PCSK9 binding to LDLR and preserved cellular LDLR. These new bipartite antagonists have reduced mass and improved potency compared to the first-generation peptide antagonists, further validating the PCSK9 groove as a viable therapeutic target site.


Assuntos
Inibidores de PCSK9 , Peptídeos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Células Hep G2 , Humanos , Estrutura Molecular , Peptídeos/química , Peptídeos/metabolismo , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/metabolismo , Ligação Proteica , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo
16.
FEBS J ; 287(16): 3565-3578, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31945259

RESUMO

The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a ~ 30% TG reduction. Another PCSK7 SNP rs508487 is in linkage disequilibrium with a promoter variant of the liver-derived apolipoprotein A-V (apoA-V), an indirect activator of the lipoprotein lipase (LpL), and is associated with elevated TG levels. We thus hypothesized that PC7 regulates the levels/activity of apoA-V. Studies in the human hepatic cell line HuH7 revealed that wild-type (WT) PC7 and its endoplasmic reticulum (ER)-retained forms bind to and enhance the degradation of human apoA-V in acidic lysosomes in a nonenzymatic fashion. PC7-induced degradation of apoA-V is inhibited by bafilomycin A1 and the alkalinizing agents: chloroquine and NH4 Cl. Thus, the PC7-induced apoA-V degradation implicates an ER-lysosomal communication inhibited by bafilomycin A1. In vitro, the natural R504H mutant enhances PC7 Ser505 phosphorylation at the structurally exposed Ser-X-Glu507 motif recognized by the secretory kinase Fam20C. Co-expression of the phosphomimetic PC7-S505E with apoA-V resulted in lower degradation compared to WT, suggesting that Ser505 phosphorylation of PC7 lowers TG levels via reduced apoA-V degradation. In agreement, in Pcsk7-/- mice fed high-fat diet, plasma apoA-V levels and adipocyte LpL activity are increased, providing an in vivo mechanistic link for a role of liver PC7 in enhanced TG storage in adipocytes.


Assuntos
Apolipoproteína A-V/metabolismo , Fígado/metabolismo , Subtilisinas/genética , Triglicerídeos/metabolismo , Animais , Apolipoproteína A-V/sangue , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Hepatócitos/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Subtilisinas/metabolismo , Triglicerídeos/sangue , Sequenciamento do Exoma/métodos
17.
Cell ; 179(2): 417-431.e19, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585081

RESUMO

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/terapia , Mastócitos/enzimologia , Mastócitos/imunologia , Triptases/antagonistas & inibidores , Triptases/imunologia , Adolescente , Regulação Alostérica/imunologia , Animais , Linhagem Celular , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Coelhos
18.
Immunity ; 50(6): 1401-1411.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31076358

RESUMO

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.


Assuntos
Coagulação Sanguínea , Inflamassomos/metabolismo , Piroptose , Trombose/etiologia , Trombose/metabolismo , Animais , Infecções Bacterianas/complicações , Infecções Bacterianas/microbiologia , Biomarcadores , Caspases/metabolismo , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais , Tromboplastina/metabolismo , Trombose/sangue , Trombose/mortalidade
19.
Biochimie ; 166: 19-26, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30946946

RESUMO

The recently discovered neutrophil serine protease 4 (NSP4) is the fourth member of the NSP family, which includes the well-studied neutrophil elastase, proteinase 3 and cathepsin G. Like the other three NSP members, NSP4 is synthesized by myeloid precursors in the bone marrow and, after cleavage of the two-amino acid activation peptide, is stored as an active protease in azurophil granules of neutrophils. Based on its primary amino acid sequence, NSP4 is predicted to have a shallow S1 specificity pocket with elastase-like substrate specificity. However, NSP4 was found to preferentially cleave after an arginine residue. Structural studies resolved this paradox by revealing an unprecedented mechanism of P1-arginine recognition. In contrast to the canonical mechanism in which the P1-arginine residue points down into a deep S1 pocket, the arginine side chain adopts a surface-exposed 'up' conformation in the NSP4 active site. This conformation is stabilized by the Phe190 residue, which serves as a hydrophobic platform for the aliphatic portion of the arginine side chain, and a network of hydrogen bonds between the arginine guanidium group and the NSP4 residues Ser192 and Ser216. This unique configuration allows NSP4 to cleave even after naturally modified arginine residues, such as citrulline and methylarginine. This non-canonical mechanism, characterized by the hallmark 'triad' Phe190-Ser192-Ser216, is largely preserved throughout evolution starting with bony fish, which appeared about 400 million years ago. Although the substrates and physiological role of NSP4 remain to be determined, its remarkable evolutionary conservation, restricted tissue expression and homology to other neutrophil serine proteases anticipate a function in immune-related processes.


Assuntos
Arginina/química , Neutrófilos/enzimologia , Proteólise , Serina Endopeptidases/química , Animais , Domínio Catalítico , Humanos , Cinética , Camundongos , Especificidade por Substrato
20.
Blood ; 133(19): 2090-2099, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30898865

RESUMO

Tissue factor, coagulation factor XII, platelets, and neutrophils are implicated as important players in the pathophysiology of (experimental) venous thrombosis (VT). Their role became evident in mouse models in which surgical handlings were required to provoke VT. Combined inhibition of the natural anticoagulants antithrombin (Serpinc1) and protein C (Proc) using small interfering RNA without additional triggers also results in a venous thrombotic phenotype in mice, most notably with vessel occlusion in large veins of the head. VT is fatal but is fully rescued by thrombin inhibition. In the present study, we used this VT mouse model to investigate the involvement of tissue factor, coagulation factor XII, platelets, and neutrophils. Antibody-mediated inhibition of tissue factor reduced the clinical features of VT, the coagulopathy in the head, and fibrin deposition in the liver. In contrast, genetic deficiency in, and small interfering RNA-mediated depletion of, coagulation factor XII did not alter VT onset, severity, or thrombus morphology. Antibody-mediated depletion of platelets fully abrogated coagulopathy in the head and liver fibrin deposition. Although neutrophils were abundant in thrombotic lesions, depletion of circulating Ly6G-positive neutrophils did not affect onset, severity, thrombus morphology, or liver fibrin deposition. In conclusion, VT after inhibition of antithrombin and protein C is dependent on the presence of tissue factor and platelets but not on coagulation factor XII and circulating neutrophils. This study shows that distinct procoagulant pathways operate in mouse VT, dependent on the triggering stimulus.


Assuntos
Plaquetas/metabolismo , Fator XII/metabolismo , Neutrófilos/metabolismo , Tromboplastina/metabolismo , Trombose Venosa/sangue , Animais , Antitrombina III/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Proteína C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA