Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 126(40): 8039-8047, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36189476

RESUMO

Calcium aluminosilicate glasses have technological importance for a variety of industrial applications. However, the short-range structure of this glass system remains widely debated regarding the formation of oxygen triclusters. It is argued that triclusters are observed in high percentages within molecular dynamics simulations because of the high melting temperatures and correspondingly high fictive temperatures. This work explores the formation of such structural units by first simulating various compositions at different liquid temperatures to understand thermodynamic factors affecting the formation of such species. Structural results are then implemented into a statistical mechanical model which can predict the formation of triclusters at a given fictive temperature. Results show temperature and composition dependence of these structures, with aluminum charge modification favored in the peraluminous regime. It is concluded that oxygen triclusters are the preferred method of charge compensation even when extrapolating to laboratory fictive temperatures, indicating that triclusters are not a byproduct of simulation timescales.

2.
Chem Rev ; 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511603

RESUMO

Atomic structure dictates the performance of all materials systems; the characteristic of disordered materials is the significance of spatial and temporal fluctuations on composition-structure-property-performance relationships. Glass has a disordered atomic arrangement, which induces localized distributions in physical properties that are conventionally defined by average values. Quantifying these statistical distributions (including variances, fluctuations, and heterogeneities) is necessary to describe the complexity of glass-forming systems. Only recently have rigorous theories been developed to predict heterogeneities to manipulate and optimize glass properties. This article provides a comprehensive review of experimental, computational, and theoretical approaches to characterize and demonstrate the effects of short-, medium-, and long-range statistical fluctuations on physical properties (e.g., thermodynamic, kinetic, mechanical, and optical) and processes (e.g., relaxation, crystallization, and phase separation), focusing primarily on commercially relevant oxide glasses. Rigorous investigations of fluctuations enable researchers to improve the fundamental understanding of the chemistry and physics governing glass-forming systems and optimize structure-property-performance relationships for next-generation technological applications of glass, including damage-resistant electronic displays, safer pharmaceutical vials to store and transport vaccines, and lower-attenuation fiber optics. We invite the reader to join us in exploring what can be discovered by going beyond the average.

3.
J Phys Chem B ; 123(35): 7640-7648, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31404490

RESUMO

Glasses are topologically disordered materials with varying degrees of fluctuations in structure and topology. This study links statistical mechanics and topological constraint theory to quantify the degree of topological fluctuations in binary phosphate glasses. Because fluctuations are a potential mechanism enabling self-organization, we investigated the ability of phosphate glasses to adapt their topology to mitigate localized stresses, e.g., in the formation of a stress-free intermediate phase. Results revealed the dependency of both glass composition and temperature in governing the ability of a glass network to relax localized stresses and achieve an ideal, isostatic state; also, the possibility of a second intermediate phase at higher modifier content was found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA