Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Radiat Res ; 200(6): 509-522, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014593

RESUMO

The induction and repair of DNA double-strand breaks (DSBs) are critical factors in the treatment of cancer by radiotherapy. To investigate the relationship between incident radiation and cell death through DSB induction many in silico models have been developed. These models produce and use custom formats of data, specific to the investigative aims of the researchers, and often focus on particular pairings of damage and repair models. In this work we use a standard format for reporting DNA damage to evaluate combinations of different, independently developed, models. We demonstrate the capacity of such inter-comparison to determine the sensitivity of models to both known and implicit assumptions. Specifically, we report on the impact of differences in assumptions regarding patterns of DNA damage induction on predicted initial DSB yield, and the subsequent effects this has on derived DNA repair models. The observed differences highlight the importance of considering initial DNA damage on the scale of nanometres rather than micrometres. We show that the differences in DNA damage models result in subsequent repair models assuming significantly different rates of random DSB end diffusion to compensate. This in turn leads to disagreement on the mechanisms responsible for different biological endpoints, particularly when different damage and repair models are combined, demonstrating the importance of inter-model comparisons to explore underlying model assumptions.


Assuntos
Reparo do DNA , Neoplasias , Humanos , Dano ao DNA , Quebras de DNA de Cadeia Dupla , Simulação por Computador
2.
Br J Radiol ; 96(1152): 20230334, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37807934

RESUMO

OBJECTIVES: Radiotherapy, surgery and chemotherapy play key roles in the curative treatment of cancer, alone and in combination. Quantifying their roles is essential for equipment provision and workforce planning. The estimate that 40% of cancer patients are cured by RT has been used extensively to inform and influence policy but is relatively old and warrants review. METHODS: Patient, tumour and treatment event data was obtained for the 5 year period from 2009 to 2013, allowing a further 5 years for survival outcomes to be known. We analysed patient-level data on utilisation of surgery, radiotherapy, and chemotherapy in cancer patients in England. Data were sourced from Public Health England, using National Cancer Registrations, the National Radiotherapy Dataset (RTDS) and the Systemic Anti-Cancer Therapy Dataset (SACT). All tumour sites (excluding C44) and ages were included. We analysed three cohorts: all patients [n = 1,029,569], patients who survived 5 years or more [n = 537,970] and patients who survived <5 years [n = 491,599]. RESULTS: Overall cancer-specific 5-year survival was 52%, and in those patients, surgery was the most common curative treatment, with 80% receiving surgery, alone or in combination; radiotherapy was delivered to 39% and chemotherapy to 29%; 45% received two and 13% all three modalities. CONCLUSIONS: The high proportion receiving multi-modality treatment emphasises the importance of integrated, resourced, multidisciplinary cancer care. Radiotherapy was delivered to almost 40% of patients who survived 5 years which underlines its importance in cancer management. ADVANCES IN KNOWLEDGE: The results are essential in planning cancer services. They also inform the public health narrative.


Assuntos
Neoplasias , Humanos , Neoplasias/radioterapia , Inglaterra/epidemiologia
3.
Plants (Basel) ; 12(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765441

RESUMO

In greenhouse production, grey mould caused by Botrytis cinerea Pers. is one of the most widespread and damaging diseases affecting medicinal cannabis (MC). Fungicide options to control this disease are extremely limited due to the regulations surrounding fungicides and chemical residues as the product end users are medical patients, often with compromised immune systems. Screening for alternative disease control options, such as biological and organic products, can be time-consuming and costly. Here, we optimise and validate a detached leaf assay as a quick and non-destructive method to evaluate interactions between plants and pathogens, allowing the assessment of potential pathogens' infectivity and product efficacy. We tested eight industrial hemp varieties for susceptibility to B. cinerea infection. Using detached leaves from a susceptible variety, we screened a variety of chemical or organic products for efficacy in controlling the lesion development caused by B. cinerea. A consistent reduction in lesion growth was observed using treatments containing Tau-fluvalinate and Myclobutanil, as well as the softer chemical alternatives containing potassium salts. The performance of treatments was pH-dependent, emphasizing the importance of applying them at optimal pH levels to maximise their effectiveness. The detached leaf assay differentiated varietal susceptibility and was an effective method for screening treatment options for diseases caused by Botrytis. The results from the detached leaf assays gave comparable results to responses tested on whole plants.

4.
Int J Radiat Oncol Biol Phys ; 116(4): 916-926, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36642109

RESUMO

PURPOSE: In proton therapy, the clinical application of linear energy transfer (LET) optimization remains contentious, in part because of challenges associated with the definition and calculation of LET and its exact relationship with relative biological effectiveness (RBE) because of large variation in experimental in vitro data. This has raised interest in other metrics with favorable properties for biological optimization, such as the number of proton track ends in a voxel. In this work, we propose a novel model for clinical calculations of RBE, based on proton track end counts. METHODS AND MATERIALS: We developed an effective dose concept to translate between the total proton track-end count per unit mass in a voxel and a proton RBE value. Dose, track end, and dose-averaged LET (LETd) distributions were simulated using Monte Carlo models for a series of water phantoms, in vitro radiobiological studies, and patient treatment plans. We evaluated the correlation between track ends and regions of elevated biological effectiveness in comparison to LETd-based models of RBE. RESULTS: Track ends were found to correlate with biological effects in in vitro experiments with an accuracy comparable to LETd. In patient simulations, our track end model identified the same biological hotspots as predicted by LETd-based radiobiological models of proton RBE. CONCLUSIONS: These results suggest that, for clinical optimization and evaluation, an RBE model based on proton track end counts may match LETd-based models in terms of information provided while also offering superior statistical properties.


Assuntos
Terapia com Prótons , Prótons , Humanos , Eficiência Biológica Relativa , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos , Transferência Linear de Energia , Método de Monte Carlo
6.
Commun Biol ; 5(1): 700, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835982

RESUMO

Immunofluorescent tagging of DNA double-strand break (DSB) markers, such as γ-H2AX and other DSB repair proteins, are powerful tools in understanding biological consequences following irradiation. However, whilst the technique is widespread, there are many uncertainties related to its ability to resolve and reliably deduce the number of foci when counting using microscopy. We present a new tool for simulating radiation-induced foci in order to evaluate microscope performance within in silico immunofluorescent images. Simulations of the DSB distributions were generated using Monte Carlo track-structure simulation. For each DSB distribution, a corresponding DNA repair process was modelled and the un-repaired DSBs were recorded at several time points. Corresponding microscopy images for both a DSB and (γ-H2AX) fluorescent marker were generated and compared for different microscopes, radiation types and doses. Statistically significant differences in miscounting were found across most of the tested scenarios. These inconsistencies were propagated through to repair kinetics where there was a perceived change between radiation-types. These changes did not reflect the underlying repair rate and were caused by inconsistencies in foci counting. We conclude that these underlying uncertainties must be considered when analysing images of DNA damage markers to ensure differences observed are real and are not caused by non-systematic miscounting.


Assuntos
Reparo do DNA
7.
Sci Rep ; 12(1): 6826, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474242

RESUMO

Preclinical radiation research lacks standardized dosimetry procedures that provide traceability to a primary standard. Consequently, ensuring accuracy and reproducibility between studies is challenging. Using 3D printed murine phantoms we undertook a dosimetry audit of Xstrahl Small Animal Radiation Research Platforms (SARRPs) installed at 7 UK centres. The geometrically realistic phantom accommodated alanine pellets and Gafchromic EBT3 film for simultaneous measurement of the dose delivered and the dose distribution within a 2D plane, respectively. Two irradiation scenarios were developed: (1) a 10 × 10 mm2 static field targeting the pelvis, and (2) a 5 × 5 mm2 90° arc targeting the brain. For static fields, the absolute difference between the planned dose and alanine measurement across all centres was 4.1 ± 4.3% (mean ± standard deviation), with an overall range of - 2.3 to 10.5%. For arc fields, the difference was - 1.2% ± 6.1%, with a range of - 13.1 to 7.7%. EBT3 dose measurements were greater than alanine by 2.0 ± 2.5% and 3.5 ± 6.0% (mean ± standard deviation) for the static and arc fields, respectively. 2D dose distributions showed discrepancies to the planned dose at the field edges. The audit demonstrates that further work on preclinical radiotherapy quality assurance processes is merited.


Assuntos
Impressão Tridimensional , Radiometria , Alanina , Animais , Camundongos , Imagens de Fantasmas , Radiometria/métodos , Reprodutibilidade dos Testes
8.
Br J Radiol ; 95(1133): 20211175, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35220723

RESUMO

OBJECTIVES: High-energy Proton Beam Therapy (PBT) commenced in England in 2018 and NHS England commissions PBT for 1.5% of patients receiving radical radiotherapy. We sought expert opinion on the level of provision. METHODS: Invitations were sent to 41 colleagues working in PBT, most at one UK centre, to contribute by completing a spreadsheet. 39 responded: 23 (59%) completed the spreadsheet; 16 (41%) declined, arguing that clinical outcome data are lacking, but joined six additional site-specialist oncologists for two consensus meetings. The spreadsheet was pre-populated with incidence data from Cancer Research UK and radiotherapy use data from the National Cancer Registration and Analysis Service. 'Mechanisms of Benefit' of reduced growth impairment, reduced toxicity, dose escalation and reduced second cancer risk were examined. RESULTS: The most reliable figure for percentage of radical radiotherapy patients likely to benefit from PBT was that agreed by 95% of the 23 respondents at 4.3%, slightly larger than current provision. The median was 15% (range 4-92%) and consensus median 13%. The biggest estimated potential benefit was from reducing toxicity, median benefit to 15% (range 4-92%), followed by dose escalation median 3% (range 0 to 47%); consensus values were 12 and 3%. Reduced growth impairment and reduced second cancer risk were calculated to benefit 0.5% and 0.1%. CONCLUSIONS: The most secure estimate of percentage benefit was 4.3% but insufficient clinical outcome data exist for confident estimates. The study supports the NHS approach of using the evidence base and developing it through randomised trials, non-randomised studies and outcomes tracking. ADVANCES IN KNOWLEDGE: Less is known about the percentage of patients who may benefit from PBT than is generally acknowledged. Expert opinion varies widely. Insufficient clinical outcome data exist to provide robust estimates. Considerable further work is needed to address this, including international collaboration; much is already underway but will take time to provide mature data.


Assuntos
Segunda Neoplasia Primária , Terapia com Prótons , Terapia por Raios X , Humanos , Segunda Neoplasia Primária/radioterapia
9.
Mutagenesis ; 37(1): 3-12, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137176

RESUMO

Micronucleus (MN) formation is routinely used as a biodosimeter for radiation exposures and has historically been used as a measure of DNA damage in cells. Strongly correlating with dose, MN are also suggested to indicate radiation quality, differentiating between particle and photon irradiation. The "gold standard" for measuring MN formation is Fenech's cytokinesis-block micronucleus (CBMN) cytome assay, which uses the cytokinesis blocking agent cytochalasin-B. Here, we present a comprehensive analysis of the literature investigating MN induction trends in vitro, collating 193 publications, with 2476 data points. Data were collected from original studies that used the CBMN assay to quantify MN in response to ionizing radiation in vitro. Overall, the meta-analysis showed that individual studies mostly have a linear increase of MN with dose [85% of MN per cell (MNPC) datasets and 89% of percentage containing MN (PCMN) datasets had an R2 greater than 0.90]. However, there is high variation between studies, resulting in a low R2 when data are combined (0.47 for MNPC datasets and 0.60 for PCMN datasets). Particle type, species, cell type, and cytochalasin-B concentration were suggested to influence MN frequency. However, variation in the data meant that the effects could not be strongly correlated with the experimental parameters investigated. There is less variation between studies when comparing the PCMN rather than the number of MNPC. Deviation from CBMN protocol specified timings did not have a large effect on MN induction. However, further analysis showed less variation between studies following Fenech's protocol closely, which provided more reliable results. By limiting the cell type and species as well as only selecting studies following the Fenech protocol, R2 was increased to 0.64 for both measures. We therefore determine that due to variation between studies, MN are currently a poor predictor of radiation-induced DNA damage and make recommendations for futures studies assessing MN to improve consistency between datasets.


Assuntos
Citocinese , Linfócitos , Dano ao DNA , Testes para Micronúcleos/métodos , Radiação Ionizante
11.
Acta Oncol ; 61(2): 206-214, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34686122

RESUMO

BACKGROUND: Clinical data suggest that the relative biological effectiveness (RBE) in proton therapy (PT) varies with linear energy transfer (LET). However, LET calculations are neither standardized nor available in clinical routine. Here, the status of LET calculations among European PT institutions and their comparability are assessed. MATERIALS AND METHODS: Eight European PT institutions used suitable treatment planning systems with their center-specific beam model to create treatment plans in a water phantom covering different field arrangements and fulfilling commonly agreed dose objectives. They employed their locally established LET simulation environments and procedures to determine the corresponding LET distributions. Dose distributions D1.1 and DRBE assuming constant and variable RBE, respectively, and LET were compared among the institutions. Inter-center variability was assessed based on dose- and LET-volume-histogram parameters. RESULTS: Treatment plans from six institutions fulfilled all clinical goals and were eligible for common analysis. D1.1 distributions in the target volume were comparable among PT institutions. However, corresponding LET values varied substantially between institutions for all field arrangements, primarily due to differences in LET averaging technique and considered secondary particle spectra. Consequently, DRBE using non-harmonized LET calculations increased inter-center dose variations substantially compared to D1.1 and significantly in mean dose to the target volume of perpendicular and opposing field arrangements (p < 0.05). Harmonizing LET reporting (dose-averaging, all protons, LET to water or to unit density tissue) reduced the inter-center variability in LET to the order of 10-15% within and outside the target volume for all beam arrangements. Consequentially, inter-institutional variability in DRBE decreased to that observed for D1.1. CONCLUSION: Harmonizing the reported LET among PT centers is feasible and allows for consistent multi-centric analysis and reporting of tumor control and toxicity in view of a variable RBE. It may serve as basis for harmonized variable RBE dose prescription in PT.


Assuntos
Transferência Linear de Energia , Terapia com Prótons , Humanos , Método de Monte Carlo , Prótons , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa
12.
Radiother Oncol ; 166: 180-188, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890735

RESUMO

BACKGROUND/PURPOSE: The increased use of hypofractionated radiotherapy changes department activity. While expected to be cost-effective, departments' fixed costs may impede savings. Understanding radiotherapy's cost-drivers, to what extent these are fixed and consequences of reducing activity can help to inform reimbursement strategies. MATERIAL/METHODS: We estimate the cost of radiotherapy provision, using time-driven activity-based costing, for five bone metastases treatment strategies, in a large NHS provider. We compare these estimations to reimbursement tariff and assess their breakdown by cost types: fixed (buildings), semi-fixed (staff, linear accelerators) and variable (materials) costs. Sensitivity analyses assess the cost-drivers and impact of reducing departmental activity on the costs of remaining treatments, with varying disinvestment assumptions. RESULTS: The estimated radiotherapy cost for bone metastases ranges from 430.95€ (single fraction) to 4240.76€ (45 Gy in 25#). Provider costs align closely with NHS reimbursement, except for the stereotactic ablative body radiotherapy (SABR) strategy (tariff exceeding by 15.3%). Semi-fixed staff costs account for 28.1-39.7% and fixed/semi-fixed equipment/space costs 38.5-54.8% of provider costs. Departmental activity is the biggest cost-driver; reduction in activity increasing cost, predominantly in fractionated treatments. Decommissioning linear accelerators ameliorates this, although can only be realised at equipment capacity thresholds. CONCLUSION: Hypofractionation is less burdensome to patients and long-term offers a cost-efficient mechanism to treat an increasing number of patients within existing capacity. As a large majority of treatment costs are fixed/semi-fixed, disinvestment is complex, within the life expectancy of a linac, imbalances between demand and capacity will result in higher treatment costs. With a per-fraction reimbursement, this may disincentivise delivery of hypofractionated treatments.


Assuntos
Radiocirurgia , Medicina Estatal , Fracionamento da Dose de Radiação , Custos de Cuidados de Saúde , Humanos , Hipofracionamento da Dose de Radiação
14.
Cancers (Basel) ; 13(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063683

RESUMO

Mechanistic in silico models can provide insight into biological mechanisms and highlight uncertainties for experimental investigation. Radiation-induced double-strand breaks (DSBs) are known to be toxic lesions if not repaired correctly. Non-homologous end joining (NHEJ) is the major DSB-repair pathway available throughout the cell cycle and, recently, has been hypothesised to consist of a fast and slow component in G0/G1. The slow component has been shown to be resection-dependent, requiring the nuclease Artemis to function. However, the pathway is not yet fully understood. This study compares two hypothesised models, simulating the action of individual repair proteins on DSB ends in a step-by-step manner, enabling the modelling of both wild-type and protein-deficient cell systems. Performance is benchmarked against experimental data from 21 cell lines and 18 radiation qualities. A model where resection-dependent and independent pathways are entirely separated can only reproduce experimental repair kinetics with additional restraints on end motion and protein recruitment. However, a model where the pathways are entwined was found to effectively fit without needing additional mechanisms. It has been shown that DaMaRiS is a useful tool when analysing the connections between resection-dependent and independent NHEJ repair pathways and robustly matches with experimental results from several sources.

15.
BJR Open ; 3(1): 20210054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36016699

RESUMO

Objective: The Covid-19 pandemic placed unprecedented strain on medical education and led to a vast increase in online learning. Subsequently, the Christie International Proton School moved from face-to-face to online. Delegate feedback and current literature were studied to determine benefits, challenges, and potential solutions, for online proton therapy education. Methods: The course was converted to a 6-week online course with twice weekly 2-h sessions. Feedback was studied pre-, during-, and post-course regarding demographics, learning objectives, proton therapy knowledge, ease of engagement, technical difficulties, and course format. Statistical analyses were performed for proton therapy knowledge pre- and post-course. Results: An increase in delegate attendance was seen with increased international and multidisciplinary diversity. Learner objectives included treatment planning, clinical applications, physics, and centre development. Average learner reported scores of confidence in proton therapy knowledge improved significantly from 3, some knowledge, to 4, adequate knowledge after the course (p<0.0001). There were minimal reported difficulties using the online platform, good reported learner engagement, and shorter twice weekly sessions were reported conducive for learning. Recordings for asynchronous learning addressed time zone difficulties. Conclusion: The obligatory switch to online platforms has catalysed a paradigm shift towards online learning with delegates reporting educational benefit. We propose solutions to challenges of international online education, and a pedagogical model for online proton therapy education. Advances in knowledge: Online education is an effective method to teach proton therapy to international audiences. The future of proton education includes a hybrid of online and practical face-to-face learning depending on the level of cognitive skill required.

16.
PLoS Comput Biol ; 16(12): e1008476, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33326415

RESUMO

Developments in the genome organisation field has resulted in the recent methodology to infer spatial conformations of the genome directly from experimentally measured genome contacts (Hi-C data). This provides a detailed description of both intra- and inter-chromosomal arrangements. Chromosomal intermingling is an important driver for radiation-induced DNA mis-repair. Which is a key biological endpoint of relevance to the fields of cancer therapy (radiotherapy), public health (biodosimetry) and space travel. For the first time, we leverage these methods of inferring genome organisation and couple them to nano-dosimetric radiation track structure modelling to predict quantities and distribution of DNA damage within cell-type specific geometries. These nano-dosimetric simulations are highly dependent on geometry and are benefited from the inclusion of experimentally driven chromosome conformations. We show how the changes in Hi-C contract maps impact the inferred geometries resulting in significant differences in chromosomal intermingling. We demonstrate how these differences propagate through to significant changes in the distribution of DNA damage throughout the cell nucleus, suggesting implications for DNA repair fidelity and subsequent cell fate. We suggest that differences in the geometric clustering for the chromosomes between the cell-types are a plausible factor leading to changes in cellular radiosensitivity. Furthermore, we investigate changes in cell shape, such as flattening, and show that this greatly impacts the distribution of DNA damage. This should be considered when comparing in vitro results to in vivo systems. The effect may be especially important when attempting to translate radiosensitivity measurements at the experimental in vitro level to the patient or human level.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA/efeitos da radiação , Genoma , Neoplasias/tratamento farmacológico , Cromossomos/efeitos da radiação , Análise por Conglomerados , Simulação por Computador , Humanos , Tolerância a Radiação
17.
Br J Radiol ; 93(1116): 20200247, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021102

RESUMO

In the UK, one in two people will develop cancer during their lifetimes and radiotherapy (RT) plays a key role in effective treatment. High energy proton beam therapy commenced in the UK National Health Service in 2018. Heavier charged particles have potential advantages over protons by delivering more dose in the Bragg peak, with a sharper penumbra, lower oxygen dependence and increased biological effectiveness. However, they also require more costly equipment including larger gantries to deliver the treatment. There are significant uncertainties in the modelling of relative biological effectiveness and the effects of the fragmentation tail which can deliver dose beyond the Bragg peak. These effects need to be carefully considered especially in relation to long-term outcomes.In 2019, a group of clinicians, clinical scientists, engineers, physical and life scientists from academia and industry, together with funding agency stakeholders, met to consider how the UK should address new technologies for RT, especially the use of heavier charged particles such as helium and carbon and new modes of delivery such as FLASH and spatially fractionated radiotherapy (SFRT).There was unanimous agreement that the UK should develop a facility for heavier charged particle therapy, perhaps constituting a new National Ion Research Centre to enable research using protons and heavier charged particles. Discussion followed on the scale and features, including which ions should be included, from protons through helium, boron, and lithium to carbon, and even oxygen. The consensus view was that any facility intended to treat patients must be located in a hospital setting while providing dedicated research space for physics, preclinical biology and clinical research with beam lines designed for both in vitro and in vivo research. The facility should to be able to investigate and deliver both ultra-high dose rate FLASH RT and SFRT (GRID, minibeams etc.). Discussion included a number of accelerator design options and whether gantries were required. Other potential collaborations might be exploited, including with space agencies, electronics and global communications industries and the nuclear industry.In preparation for clinical delivery, there may be opportunities to send patients overseas (for 12C or 4He ion therapy) using the model of the National Health Service (NHS) Proton Overseas Programme and to look at potential national clinical trials which include heavier ions, FLASH or SFRT. This could be accomplished under the auspices of NCRI CTRad (National Cancer Research Institute, Clinical and Translational Radiotherapy Research Working Group).The initiative should be a community approach, involving all interested parties with a vision that combines discovery science, a translational research capability and a clinical treatment facility. Barriers to the project and ways to overcome them were discussed. Finally, a set of different scenarios of features with different costs and timelines was constructed, with consideration given to the funding environment (prer-Covid-19) and need for cross-funder collaboration.


Assuntos
Fracionamento da Dose de Radiação , Radioterapia com Íons Pesados/métodos , Neoplasias/radioterapia , Humanos , Reino Unido
18.
Med Phys ; 47(11): 5817-5828, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32967037

RESUMO

PURPOSE: Geant4 is a multi-purpose Monte Carlo simulation tool for modeling particle transport in matter. It provides a wide range of settings, which the user may optimize for their specific application. This study investigates GATE/Geant4 parameter settings for proton pencil beam scanning therapy. METHODS: GATE8.1/Geant4.10.3.p03 (matching the versions used in GATE-RTion1.0) simulations were performed with a set of prebuilt Geant4 physics lists (QGSP_BIC, QGSP_BIC_EMY, QGSP_BIC_EMZ, QGSP_BIC_HP_EMZ), using 0.1mm-10mm as production cuts on secondary particles (electrons, photons, positrons) and varying the maximum step size of protons (0.1mm, 1mm, none). The results of the simulations were compared to measurement data taken during clinical patient specific quality assurance at The Christie NHS Foundation Trust pencil beam scanning proton therapy facility. Additionally, the influence of simulation settings was quantified in a realistic patient anatomy based on computer tomography (CT) scans. RESULTS: When comparing the different physics lists, only the results (ranges in water) obtained with QGSP_BIC (G4EMStandardPhysics_Option0) depend on the maximum step size. There is clinically negligible difference in the target region when using High Precision neutron models (HP) for dose calculations. The EMZ electromagnetic constructor provides a closer agreement (within 0.35 mm) to measured beam sizes in air, but yields up to 20% longer execution times compared to the EMY electromagnetic constructor (maximum beam size difference 0.79 mm). The impact of this on patient-specific quality assurance simulations is clinically negligible, with a 97% average 2%/2 mm gamma pass rate for both physics lists. However, when considering the CT-based patient model, dose deviations up to 2.4% are observed. Production cuts do not substantially influence dosimetric results in solid water, but lead to dose differences of up to 4.1% in the patient CT. Small (compared to voxel size) production cuts increase execution times by factors of 5 (solid water) and 2 (patient CT). CONCLUSIONS: Taking both efficiency and dose accuracy into account and considering voxel sizes with 2 mm linear size, the authors recommend the following Geant4 settings to simulate patient specific quality assurance measurements: No step limiter on proton tracks; production cuts of 1 mm for electrons, photons and positrons (in the phantom and range-shifter) and 10 mm (world); best agreement to measurement data was found for QGSP_BIC_EMZ reference physics list at the cost of 20% increased execution times compared to QGSP_BIC_EMY. For simulations considering the patient CT model, the following settings are recommended: No step limiter on proton tracks; production cuts of 1 mm for electrons, photons and positrons (phantom/range-shifter) and 10 mm (world) if the goal is to achieve sufficient dosimetric accuracy to ensure that a plan is clinically safe; or 0.1 mm (phantom/range-shifter) and 1 mm (world) if higher dosimetric accuracy is needed (increasing execution times by a factor of 2); most accurate results expected for QGSP_BIC_EMZ reference physics list, at the cost of 10-20% increased execution times compared to QGSP_BIC_EMY.


Assuntos
Terapia com Prótons , Prótons , Simulação por Computador , Humanos , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Comput Phys Commun ; 252: 107131, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32624585

RESUMO

A new method to locate, with millimetre uncertainty, in 3D, a γ -ray source emitting multiple γ -rays in a cascade, employing conventional LaBr3(Ce) scintillation detectors, has been developed. Using 16 detectors in a symmetrical configuration the detector energy and time signals, resulting from the γ -ray interactions, are fed into a new source position reconstruction algorithm. The Monte-Carlo based Geant4 framework has been used to simulate the detector array and a 60Co source located at two positions within the spectrometer central volume. For a source located at (0,0,0) the algorithm reports X, Y, Z values of -0.3 ± 2.5, -0.4 ± 2.4, and -0.6 ± 2.5 mm, respectively. For a source located at (20,20,20) mm, with respect to the array centre, the algorithm reports X, Y, Z values of 20.2 ± 1.0, 20.2 ± 0.9, and 20.1 ± 1.2 mm. The resulting precision of the reconstruction means that this technique could find application in a number of areas including nuclear medicine, national security, radioactive waste assay and proton beam therapy.

20.
Radiother Oncol ; 147: 153-161, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32445860

RESUMO

BACKGROUND AND PURPOSE: Assessment of dosimetric accuracy of radiosurgery on different treatment platforms. MATERIAL AND METHODS: Thirty-three single fraction treatment plans were assessed at thirty centres using an anthropomorphic head phantom with target and brainstem structures. The target being a single irregular shaped target, ~8 cc, 10 mm from the brainstem. The phantom was "immobilised", scanned, planned and treated following the local protocols. EBT-XD films and alanine pellets were used to measure absolute dose, inside both the target and the brainstem, and compared with TPS predicted dose distributions. RESULTS: PTV alanine measurements from gantry-based linacs showed a median percentage difference to the TPS of 0.65%. Cyberknife (CK) had the highest median difference of 2.3% in comparison to the other platforms. GammaKnife (GK) showed the smallest median of 0.3%. Similar trends were observed in the OAR with alanine measurements showing median percentage differences of1.1%, 2.0% and 0.4%, for gantry-based linacs, CK and GK respectively. All platforms showed comparable gamma passing rates between axial and sagittal films. CONCLUSIONS: This comparison has highlighted the dosimetric variation between measured and TPS calculated dose for each delivery platform. The results suggest that clinically acceptable agreement with the predicted dose distributions is achievable by all treatment delivery systems.


Assuntos
Radiocirurgia , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA