Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Med Chem ; 67(10): 8122-8140, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712838

RESUMO

Multiple sclerosis (MS) is a chronic disease with an underlying pathology characterized by inflammation-driven neuronal loss, axonal injury, and demyelination. Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase and member of the TEC family of kinases, is involved in the regulation, migration, and functional activation of B cells and myeloid cells in the periphery and the central nervous system (CNS), cell types which are deemed central to the pathology contributing to disease progression in MS patients. Herein, we describe the discovery of BIIB129 (25), a structurally distinct and brain-penetrant targeted covalent inhibitor (TCI) of BTK with an unprecedented binding mode responsible for its high kinome selectivity. BIIB129 (25) demonstrated efficacy in disease-relevant preclinical in vivo models of B cell proliferation in the CNS, exhibits a favorable safety profile suitable for clinical development as an immunomodulating therapy for MS, and has a low projected total human daily dose.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Encéfalo , Esclerose Múltipla , Inibidores de Proteínas Quinases , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Humanos , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/química , Encéfalo/metabolismo , Camundongos , Descoberta de Drogas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Ratos , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Feminino
2.
Toxicol Pathol ; 52(1): 35-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38385340

RESUMO

Recombinant adeno-associated virus (AAV)-mediated degeneration of sensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia (TG) has been observed in non-human primates (NHPs) following intravenous (IV) and intrathecal (IT) delivery. Administration of recombinant AAV encoding a human protein transgene via a single intra-cisterna magna (ICM) injection in New Zealand white rabbits resulted in histopathology changes very similar to NHPs: mononuclear cell infiltration, degeneration/necrosis of sensory neurons, and nerve fiber degeneration of sensory tracts in the spinal cord and of multiple nerves. AAV-associated clinical signs and incidence/severity of histologic findings indicated that rabbits were equally or more sensitive than NHPs to sensory neuron damage. Another study using human and rabbit transgene constructs of the same protein demonstrated comparable changes suggesting that the effects are not an immune response to the non-self protein transgene. Rabbit has not been characterized as a species for general toxicity testing of AAV gene therapies, but these studies suggest that it may be an alternative model to investigate mechanisms of AAV-mediated neurotoxicity and test novel AAV designs mitigating these adverse effects.


Assuntos
Dependovirus , Gânglios Espinais , Animais , Coelhos , Dependovirus/genética , Vetores Genéticos , Masculino , Humanos , Transgenes , Feminino , Células Receptoras Sensoriais
3.
Regul Toxicol Pharmacol ; 145: 105498, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778433

RESUMO

BIIB131, a small molecule, is currently in Phase 2 for the treatment of acute ischemic stroke. Safety and metabolism of BIIB131 were evaluated following intravenous administration to rats and monkeys. Exposure increased dose-proportionally in rats up to 60 mg/kg and more than dose-proportionally in monkeys at greater than 10 mg/kg accompanied by prolonged half-life and safety findings. The BIIB131 was poorly metabolized in microsomes with no inhibition of CYPs. BIIB131-glucuronide, formed by UGT1A1, accounted for 21.5% metabolism in human hepatocytes and 28-40% in rat bile. In rats, excretion was primarily via the bile. BIIB131 inhibited the hERG and Nav1.5 cardiac channels by 39% but showed no effect on cardiovascular parameters in monkeys. Toxicology findings were limited to reversable hematuria, changes in urinary parameters and local effects. A MTD of 30 mg/kg was established in monkeys, the most sensitive species, at total plasma Cmax and AUC of 6- and 14-fold, respectively, greater than the NOAEL. The Phase 1 study started with intravenous 0.05 mg/kg and ascended to 6.0 mg/kg which corresponded to safety margins of 147- to 0.9-fold (for Cmax) within the linear drug exposure. Thus, the preclinical profile of BIIB131 has been appropriately characterized and supports its further clinical development.


Assuntos
AVC Isquêmico , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Toxicocinética , AVC Isquêmico/metabolismo , Injeções Intravenosas , Bile/metabolismo
4.
J Pharm Biomed Anal ; 236: 115752, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37769527

RESUMO

Capillary microsampling (CMS) is a technique that can significantly reduce the blood collection volume compared to conventional sampling methods, and thus is much preferred for studies in rats and mice. BIIB131 (SMTP-7) is a novel thrombolytic drug candidate currently under Phase 2 clinical development for the treatment of acute ischemic stroke. To support the safety studies in rats, an accurate and reliable CMS LC-MS/MS assay for the quantification of BIIB131 in rat plasma was developed and validated. This method utilized stable-isotope labeled [13C515N2]-BIIB131 as the internal standard. The samples were extracted using acid-assisted liquid-liquid extraction with methyl tert-butyl ether (MTBE) and formic acid. The chromatographic separation was achieved on an ACE Excel 3 Super C18 analytical column (2.1 mm × 50 mm, 3.0 µm) using a gradient elution. The mass spectrometric detection of BIIB131 and its internal standard was achieved using positive ion electrospray multiple reaction monitoring (MRM). The standard curve ranged from 0.50 to 300 ng/mL for BIIB131 and was fitted to a 1/x2 weighted linear regression model. For regular QCs, the intra-assay precision was 1.7-6.1 % CV, the inter-assay precision was 2.7-11.0 % CV, and the intra-assay and inter-assay accuracy (%Bias) were -20.0-10.6 % and -7.8-6.3 %, respectively. For CMS QCs, the intra-assay and inter-assay precision were 2.2-13.6 % and 6.7-12.9 % CV, and the intra-assay and inter-assay accuracy (%Bias) were -13.2-15.0 % and -7.8-4.2 %, respectively. The validated CMS LC-MS/MS method has been successfully applied to a safety study in rats.

5.
Bioorg Med Chem Lett ; 29(14): 1842-1848, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109791

RESUMO

GPR40 (FFAR1 or FFA1) is a G protein-coupled receptor, primarily expressed in pancreatic islet ß-cells and intestinal enteroendocrine cells. When activated by fatty acids, GPR40 elicits increased insulin secretion from islet ß-cells only in the presence of elevated glucose levels. Towards this end, studies were undertaken towards discovering a novel GPR40 Agonist whose mode of action is via Positive Allosteric Modulation of the GPR40 receptor (AgoPAM). Efforts were made to identify a suitable GPR40 AgoPAM tool molecule to investigate mechanism of action and de-risk liver toxicity of GPR40 AgoPAMs due to reactive acyl-glucuronide (AG) metabolites.


Assuntos
Indanos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Desenho de Fármacos , Humanos
6.
ACS Med Chem Lett ; 9(7): 685-690, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034601

RESUMO

A series of biaryl chromans exhibiting potent and selective agonism for the GPR40 receptor with positive allosteric modulation of endogenous ligands (AgoPAM) were discovered as potential therapeutics for the treatment of type II diabetes. Optimization of physicochemical properties through modification of the pendant aryl rings resulted in the identification of compound AP5, which possesses an improved metabolic profile while demonstrating sustained glucose lowering.

7.
PLoS One ; 12(10): e0186033, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29053717

RESUMO

GPR40 agonists are effective antidiabetic agents believed to lower glucose through direct effects on the beta cell to increase glucose stimulated insulin secretion. However, not all GPR40 agonists are the same. Partial agonists lower glucose through direct effects on the pancreas, whereas GPR40 AgoPAMs may incorporate additional therapeutic effects through increases in insulinotrophic incretins secreted by the gut. Here we describe how GPR40 AgoPAMs stimulate both insulin and incretin secretion in vivo over time in diabetic GK rats. We also describe effects of AgoPAMs in vivo to lower glucose and body weight beyond what is seen with partial GPR40 agonists in both the acute and chronic setting. Further comparisons of the glucose lowering profile of AgoPAMs suggest these compounds may possess greater glucose control even in the presence of elevated glucagon secretion, an unexpected feature observed with both acute and chronic treatment with AgoPAMs. Together these studies highlight the complexity of GPR40 pharmacology and the potential additional benefits AgoPAMs may possess above partial agonists for the diabetic patient.


Assuntos
Glucose/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Linhagem Celular , Cricetulus , Glucagon/metabolismo , Teste de Tolerância a Glucose , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Ratos
8.
PLoS One ; 12(5): e0176182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28542610

RESUMO

GPR40 (FFA1) is a fatty acid receptor whose activation results in potent glucose lowering and insulinotropic effects in vivo. Several reports illustrate that GPR40 agonists exert glucose lowering in diabetic humans. To assess the mechanisms by which GPR40 partial agonists improve glucose homeostasis, we evaluated the effects of MK-2305, a potent and selective partial GPR40 agonist, in diabetic Goto Kakizaki rats. MK-2305 decreased fasting glucose after acute and chronic treatment. MK-2305-mediated changes in glucose were coupled with increases in plasma insulin during hyperglycemia and glucose challenges but not during fasting, when glucose was normalized. To determine the mechanism(s) mediating these changes in glucose metabolism, we measured the absolute contribution of precursors to glucose production in the presence or absence of MK-2305. MK-2305 treatment resulted in decreased endogenous glucose production (EGP) driven primarily through changes in gluconeogenesis from substrates entering at the TCA cycle. The decrease in EGP was not likely due to a direct effect on the liver, as isolated perfused liver studies showed no effect of MK-2305 ex vivo and GPR40 is not expressed in the liver. Taken together, our results suggest MK-2305 treatment increases glucose stimulated insulin secretion (GSIS), resulting in changes to hepatic substrate handling that improve glucose homeostasis in the diabetic state. Importantly, these data extend our understanding of the underlying mechanisms by which GPR40 partial agonists reduce hyperglycemia.


Assuntos
Benzopiranos/farmacologia , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Tiazolidinedionas/farmacologia , Animais , Benzopiranos/química , Glicemia/metabolismo , Células CHO , Cricetulus , Diabetes Mellitus Experimental/metabolismo , Avaliação Pré-Clínica de Medicamentos , Jejum/sangue , Células HEK293 , Humanos , Hipoglicemiantes/química , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Knockout , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tiazolidinedionas/química , Fatores de Tempo , Técnicas de Cultura de Tecidos
9.
ACS Med Chem Lett ; 8(2): 221-226, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28197316

RESUMO

GPR40 is a G-protein-coupled receptor expressed primarily in pancreatic islets and intestinal L-cells that has been a target of significant recent therapeutic interest for type II diabetes. Activation of GPR40 by partial agonists elicits insulin secretion only in the presence of elevated blood glucose levels, minimizing the risk of hypoglycemia. GPR40 agoPAMs have shown superior efficacy to partial agonists as assessed in a glucose tolerability test (GTT). Herein, we report the discovery and optimization of a series of potent, selective GPR40 agoPAMs. Compound 24 demonstrated sustained glucose lowering in a chronic study of Goto Kakizaki rats, showing no signs of tachyphylaxis for this mechanism.

11.
ACS Med Chem Lett ; 8(1): 49-54, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28105274

RESUMO

Type 2 diabetes mellitus (T2DM) is an ever increasing worldwide epidemic, and the identification of safe and effective insulin sensitizers, absent of weight gain, has been a long-standing goal of diabetes research. G-protein coupled receptor 120 (GPR120) has recently emerged as a potential therapeutic target for treating T2DM. Natural occurring, and more recently, synthetic agonists have been associated with insulin sensitizing, anti-inflammatory, and fat metabolism effects. Herein we describe the design, synthesis, and evaluation of a novel spirocyclic GPR120 agonist series, which culminated in the discovery of potent and selective agonist 14. Furthermore, compound 14 was evaluated in vivo and demonstrated acute glucose lowering in an oral glucose tolerance test (oGTT), as well as improvements in homeostatic measurement assessment of insulin resistance (HOMA-IR; a surrogate marker for insulin sensitization) and an increase in glucose infusion rate (GIR) during a hyperinsulinemic euglycemic clamp in diet-induced obese (DIO) mice.

12.
ACS Med Chem Lett ; 8(1): 96-101, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28105282

RESUMO

GPR120 (FFAR4) is a fatty acid sensing G protein coupled receptor (GPCR) that has been identified as a target for possible treatment of type 2 diabetes. A selective activator of GPR120 containing a chromane scaffold has been designed, synthesized, and evaluated in vivo. Results of these efforts suggest that chromane propionic acid 18 is a suitable tool molecule for further animal studies. Compound 18 is selective over the closely related target GPR40 (FFAR1), has a clean off-target profile, demonstrates suitable pharmacokinetic properties, and has been evaluated in wild-type/knockout GPR120 mouse oGTT studies.

13.
ACS Med Chem Lett ; 7(12): 1107-1111, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994747

RESUMO

GPR142 has been identified as a potential glucose-stimulated insulin secretion (GSIS) target for the treatment of type 2 diabetes mellitus (T2DM). A class of triazole GPR142 agonists was discovered through a high throughput screen. The lead compound 4 suffered from poor metabolic stability and poor solubility. Lead optimization strategies to improve potency, efficacy, metabolic stability, and solubility are described. This optimization led to compound 20e, which showed significant reduction of glucose excursion in wild-type but not in GPR142 deficient mice in an oral glucose tolerance test (oGTT) study. These studies provide strong evidence that reduction of glucose excursion through treatment with 20e is GPR142-mediated, and GPR142 agonists could be used as a potential treatment for type 2 diabetes.

14.
Bioorg Med Chem Lett ; 26(23): 5724-5728, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815121

RESUMO

The transformation of an aryloxybutanoic acid ultra high-throughput screening (uHTS) hit into a potent and selective series of G-protein coupled receptor 120 (GPR120) agonists is reported. uHTS hit 1 demonstrated an excellent rodent pharmacokinetic profile and selectivity over the related fatty acid receptor GPR40, but only modest GPR120 potency. Optimization of the "left-hand" aryl group led to compound 6, which demonstrated a GPR120 mechanism-based pharmacodynamic effect in a mouse oral glucose tolerance test (oGTT). Further optimization gave rise to the benzofuran propanoic acid series (exemplified by compound 37), which demonstrated acute mechanism-based pharmacodynamic effects. The combination of in vivo efficacy and attractive rodent pharmacodynamic profiles suggests compounds generated from this series may afford attractive candidates for the treatment of Type 2 diabetes.


Assuntos
Benzofuranos/química , Benzofuranos/farmacologia , Propionatos/química , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Benzofuranos/sangue , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Hipoglicemiantes/sangue , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Propionatos/sangue , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA