Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Pharmacol ; 177(10): 2256-2273, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31968123

RESUMO

BACKGROUND AND PURPOSE: Respiratory viral infections play central roles in the initiation, exacerbation and progression of asthma in humans. An acute paramyxoviral infection in mice can cause a chronic lung disease that resembles human asthma. We sought to determine whether reduction of Sendai virus lung burden in mice by stimulating innate immunity with aerosolized Toll-like receptor (TLR) agonists could attenuate the severity of chronic asthma-like lung disease. EXPERIMENTAL APPROACH: Mice were treated by aerosol with 1-µM oligodeoxynucleotide (ODN) M362, an agonist of the TLR9 homodimer, and 4-µM Pam2CSK4 (Pam2), an agonist of the TLR2/6 heterodimer, within a few days before or after Sendai virus challenge. KEY RESULTS: Treatment with ODN/Pam2 caused ~75% reduction in lung Sendai virus burden 5 days after challenge. The reduction in acute lung virus burden was associated with marked reductions 49 days after viral challenge in eosinophilic and lymphocytic lung inflammation, airway mucous metaplasia, lumenal mucus occlusion and hyperresponsiveness to methacholine. Mechanistically, ODN/Pam2 treatment attenuated the chronic asthma phenotype by suppressing IL-33 production by type 2 pneumocytes, both by reducing the severity of acute infection and by down-regulating Type 2 (allergic) inflammation. CONCLUSION AND IMPLICATIONS: These data suggest that treatment of susceptible human hosts with aerosolized ODN and Pam2 at the time of a respiratory viral infection might attenuate the severity of the acute infection and reduce initiation, exacerbation and progression of asthma.


Assuntos
Asma , Hipersensibilidade , Pneumonia , Viroses , Animais , Asma/tratamento farmacológico , Asma/prevenção & controle , Pulmão , Camundongos , Camundongos Endogâmicos BALB C
3.
PLoS One ; 14(2): e0208216, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794556

RESUMO

Pneumonia remains a global health threat, in part due to expanding categories of susceptible individuals and increasing prevalence of antibiotic resistant pathogens. However, therapeutic stimulation of the lungs' mucosal defenses by inhaled exposure to a synergistic combination of Toll-like receptor (TLR) agonists known as Pam2-ODN promotes mouse survival of pneumonia caused by a wide array of pathogens. This inducible resistance to pneumonia relies on intact lung epithelial TLR signaling, and inducible protection against viral pathogens has recently been shown to require increased production of epithelial reactive oxygen species (ROS) from multiple epithelial ROS generators. To determine whether similar mechanisms contribute to inducible antibacterial responses, the current work investigates the role of ROS in therapeutically-stimulated protection against Pseudomonas aerugnosa challenges. Inhaled Pam2-ODN treatment one day before infection prevented hemorrhagic lung cytotoxicity and mouse death in a manner that correlated with reduction in bacterial burden. The bacterial killing effect of Pam2-ODN was recapitulated in isolated mouse and human lung epithelial cells, and the protection correlated with inducible epithelial generation of ROS. Scavenging or targeted blockade of ROS production from either dual oxidase or mitochondrial sources resulted in near complete loss of Pam2-ODN-induced bacterial killing, whereas deficiency of induced antimicrobial peptides had little effect. These findings support a central role for multisource epithelial ROS in inducible resistance against a bacterial pathogen and provide mechanistic insights into means to protect vulnerable patients against lethal infections.


Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Lipopeptídeos/farmacologia , Oligodesoxirribonucleotídeos/farmacologia , Pneumonia Bacteriana/imunologia , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/imunologia , Receptores Toll-Like/agonistas , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/imunologia , Combinação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células HEK293 , Humanos , Imunidade nas Mucosas/fisiologia , Exposição por Inalação , Ligantes , Lipopeptídeos/administração & dosagem , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/patologia , Substâncias Protetoras/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Vacinação/métodos
4.
mBio ; 9(3)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764948

RESUMO

Viral pneumonias cause profound worldwide morbidity, necessitating novel strategies to prevent and treat these potentially lethal infections. Stimulation of intrinsic lung defenses via inhalation of synergistically acting Toll-like receptor (TLR) agonists protects mice broadly against pneumonia, including otherwise-lethal viral infections, providing a potential opportunity to mitigate infectious threats. As intact lung epithelial TLR signaling is required for the inducible resistance and as these cells are the principal targets of many respiratory viruses, the capacity of lung epithelial cells to be therapeutically manipulated to function as autonomous antiviral effectors was investigated. Our work revealed that mouse and human lung epithelial cells could be stimulated to generate robust antiviral responses that both reduce viral burden and enhance survival of isolated cells and intact animals. The antiviral protection required concurrent induction of epithelial reactive oxygen species (ROS) from both mitochondrial and dual oxidase sources, although neither type I interferon enrichment nor type I interferon signaling was required for the inducible protection. Taken together, these findings establish the sufficiency of lung epithelial cells to generate therapeutically inducible antiviral responses, reveal novel antiviral roles for ROS, provide mechanistic insights into inducible resistance, and may provide an opportunity to protect patients from viral pneumonia during periods of peak vulnerability.IMPORTANCE Viruses are the most commonly identified causes of pneumonia and inflict unacceptable morbidity, despite currently available therapies. While lung epithelial cells are principal targets of respiratory viruses, they have also been recently shown to contribute importantly to therapeutically inducible antimicrobial responses. This work finds that lung cells can be stimulated to protect themselves against viral challenges, even in the absence of leukocytes, both reducing viral burden and improving survival. Further, it was found that the protection occurs via unexpected induction of reactive oxygen species (ROS) from spatially segregated sources without reliance on type I interferon signaling. Coordinated multisource ROS generation has not previously been described against viruses, nor has ROS generation been reported for epithelial cells against any pathogen. Thus, these findings extend the potential clinical applications for the strategy of inducible resistance to protect vulnerable people against viral infections and also provide new insights into the capacity of lung cells to protect against infections via novel ROS-dependent mechanisms.


Assuntos
Células Epiteliais/imunologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Células Epiteliais/virologia , Feminino , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/genética , Influenza Humana/virologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
5.
Eur J Pharmacol ; 818: 191-197, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29066417

RESUMO

Influenza pneumonia remains a common and debilitating viral infection despite vaccination programs and antiviral agents developed for prophylaxis and treatment. The neuraminidase inhibitor oseltamivir is frequently prescribed for established influenza A virus infections, but the emergence of neuraminidase inhibitor resistant viruses, a brief therapeutic window and competing diagnoses complicate its use. PUL-042 is a clinical stage, aerosol drug comprised of synthetic ligands for Toll-like receptor (TLR) 2/6 and TLR 9. This host-targeted, innate immune stimulant broadly protects against bacterial, fungal and viral pneumonias, including those caused by influenza, when given prophylactically to animals. This study evaluated the therapeutic antiviral effects of PUL-042 against established influenza A pneumonia, when given alone or in combination with oseltamivir. Mice were treated with PUL-042 aerosol, oseltamivir or both at varying time points before or after challenge with influenza pneumonia. Treating established, otherwise lethal influenza A pneumonia (>1 LD100) with multiple inhaled doses of PUL-042 aerosol plus oral oseltamivir resulted in greater mouse survival than treatment with either drug alone. Single agent PUL-042 also protected mice against established infections following challenges with lower viral inocula (approximately 1 LD20). Aerosolized oseltamivir further enhanced survival when co-delivered with PUL-042 aerosol. The prophylactic and therapeutic benefits of PUL-042 were similar against multiple strains of influenza virus. In vitro influenza challenge of human HBEC3kt lung epithelial cells revealed PUL-042-induced protection against infection that was comparable to that observed in vivo. These studies offer new insights into means to protect susceptible populations against influenza A pneumonia.


Assuntos
Vírus da Influenza A Subtipo H3N2/fisiologia , Lipopeptídeos/farmacologia , Oligodesoxirribonucleotídeos/farmacologia , Oseltamivir/administração & dosagem , Oseltamivir/farmacologia , Pneumonia/tratamento farmacológico , Pneumonia/virologia , Receptores Toll-Like/metabolismo , Administração Oral , Aerossóis , Animais , Interações Medicamentosas , Humanos , Ligantes , Lipopeptídeos/efeitos adversos , Lipopeptídeos/uso terapêutico , Masculino , Camundongos , Oligodesoxirribonucleotídeos/efeitos adversos , Oligodesoxirribonucleotídeos/uso terapêutico , Oseltamivir/uso terapêutico , Receptor 2 Toll-Like/agonistas , Receptor 6 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA