Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36562752

RESUMO

In recent years, Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) has emerged as a flexible method that enables semi-automated volume ultrastructural imaging. We present a toolset for adherent cells that enables tracking and finding cells, previously identified in light microscopy (LM), in the FIB-SEM, along with the automatic acquisition of high-resolution volume datasets. We detect the underlying grid pattern in both modalities (LM and EM), to identify common reference points. A combination of computer vision techniques enables complete automation of the workflow. This includes setting the coincidence point of both ion and electron beams, automated evaluation of the image quality and constantly tracking the sample position with the microscope's field of view reducing or even eliminating operator supervision. We show the ability to target the regions of interest in EM within 5 µm accuracy while iterating between different targets and implementing unattended data acquisition. Our results demonstrate that executing volume acquisition in multiple locations autonomously is possible in EM.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Volume , Microscopia Eletrônica de Varredura , Imageamento Tridimensional/métodos , Software
2.
J Microsc ; 281(2): 112-124, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32557536

RESUMO

Cryo-electron tomography (cryo-ET) is a groundbreaking technology for 3D visualisation and analysis of biomolecules in the context of cellular structures. It allows structural investigations of single proteins as well as their spatial arrangements within the cell. Cryo-tomograms provide a snapshot of the complex, heterogeneous and transient subcellular environment. Due to the excellent structure preservation in amorphous ice, it is possible to study interactions and spatial relationships of proteins in their native state without interference caused by chemical fixatives or contrasting agents. With the introduction of focused ion beam (FIB) technology, the preparation of cellular samples for electron tomography has become much easier and faster. The latest generation of integrated FIB and scanning electron microscopy (SEM) instruments (dual beam microscopes), specifically designed for cryo-applications, provides advances in automation, imaging and the preparation of high-pressure frozen bulk samples using cryo-lift-out technology. In addition, correlative cryo-fluorescence microscopy provides cellular targeting information through integrated software and hardware interfaces. The rapid advances, based on the combination of correlative cryo-microscopy, cryo-FIB and cryo-ET, have already led to a wealth of new insights into cellular processes and provided new 3D image data of the cell. Here we introduce our recent developments within the cryo-tomography workflow, and we discuss the challenges that lie ahead. LAY DESCRIPTION: This article describes our recent developments for the cryo-electron tomography (cryo-ET) workflow. Cryo-ET offers superior structural preservation and provides 3D snapshots of the interior of vitrified cells at molecular resolution. Before a cellular sample can be imaged by cryo-ET, it must be made accessible for transmission electron microscopy. This is achieved by preparing a 200-300 nm thin cryo-lamella from the cellular sample using a cryo-focused ion beam (cryo-FIB) microscope. Cryo-correlative light and electron microscopy (cryo-CLEM) is used within the workflow to guide the cryo-lamella preparation to the cellular areas of interest. We cover a basic introduction of the cryo-ET workflow and show new developments for cryo-CLEM, which facilitate the connection between the cryo-light microscope and the cryo-FIB. Next, we present our progress in cryo-FIB software automation to streamline cryo-lamella preparation. In the final section we demonstrate how the cryo-FIB can be used for 3D imaging and how bulk-frozen cellular samples (obtained by high-pressure freezing) can be processed using the newly developed cryo-lift-out technology.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Automação , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Fluxo de Trabalho
3.
Biophys J ; 114(10): 2408-2418, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29754715

RESUMO

Intermediate filaments (IFs) are principal components of the cytoskeleton, a dynamic integrated system of structural proteins that provides the functional architecture of metazoan cells. They are major contributors to the elasticity of cells and tissues due to their high mechanical stability and intrinsic flexibility. The basic building block for the assembly of IFs is a rod-like, 60-nm-long tetrameric complex made from two antiparallel, half-staggered coiled coils. In low ionic strength, tetramers form stable complexes that rapidly assemble into filaments upon raising the ionic strength. The first assembly products, "frozen" by instantaneous chemical fixation and viewed by electron microscopy, are 60-nm-long "unit-length" filaments (ULFs) that apparently form by lateral in-register association of tetramers. ULFs are the active elements of IF growth, undergoing longitudinal end-to-end annealing with one another and with growing filaments. Originally, we have employed quantitative time-lapse atomic force and electron microscopy to analyze the kinetics of vimentin-filament assembly starting from a few seconds to several hours. To obtain detailed quantitative insight into the productive reactions that drive ULF formation, we now introduce a "stopped-flow" approach in combination with static light-scattering measurements. Thereby, we determine the basic rate constants for lateral assembly of tetramers to ULFs. Processing of the recorded data by a global fitting procedure enables us to describe the hierarchical steps of IF formation. Specifically, we propose that tetramers are consumed within milliseconds to yield octamers that are obligatory intermediates toward ULF formation. Although the interaction of tetramers is diffusion controlled, it is strongly driven by their geometry to mediate effective subunit targeting. Importantly, our model conclusively reflects the previously described occurrence of polymorphic ULF and mature filaments in terms of their number of tetramers per cross section.


Assuntos
Filamentos Intermediários/metabolismo , Multimerização Proteica , Vimentina/química , Humanos , Cinética , Modelos Moleculares , Estrutura Quaternária de Proteína
4.
Microscopy (Oxf) ; 64(1): 45-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542963

RESUMO

Charting and understanding the full wiring diagram of complex neuronal structures such as the central nervous system or the brain (Connectomics) is one of the big remaining challenges in life sciences. Although at first it appears nearly impossible to map out a full diagram of, e.g., a mouse brain with sufficient resolution to identify each and every connection between neurons, recent technological advances move such an ambitious undertaking into the realms of possibility without spending decades at a microscope. However there are still many challenges to address in order to pave the way for fast and systematic neurobiological understanding of whole networks. These challenges range from a more robust and reproducible sample preparation to automated image data acquisition, more efficient data storage strategies and powerful data analysis tools. Here we will review novel imaging techniques developed for the challenge of mapping out the full connectome of a nervous system, brain or eye to name just a few examples. The imaging techniques reviewed cover light sheet illumination methods, single and multi-beam scanning electron microscopy, and we will briefly mention the possible combination of both light and electron microscopy. In particular we will review 'clearing' and in vivo methods that can be performed with light sheet fluroescence microscopes such as the ZEISS Lightsheet Z.1. We will then focus on scanning electron microscopy with single and multi-beam instruments including methods such as serial blockface imaging and array tomography methods.


Assuntos
Encéfalo/ultraestrutura , Conectoma/métodos , Animais , Humanos , Camundongos , Microscopia Eletrônica de Varredura/métodos , Neurônios/ultraestrutura
5.
Commun Integr Biol ; 5(1): 71-3, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22482015

RESUMO

Membrane Type-1 Matrix Metalloproteinase (MT1-MMP, MMP-14) is regarded as the prototype of a membrane- tethered protease. It drives fundamental biological processes ranging from embryogenesis to cancer metastasis. The proteolytic cleavage of proteins by MT1-MMP can rapidly alter the biophysical properties of a cell's microenvironment. Cell's must thus be able to sense and react to these alterations and transduce these effectively in biochemical signals and cell responses. Although many cells react as acutely to such physical stimuli as they do to chemical ones, the regulatory effects of these have been less extensively explored. In order to investigate a possible interdependency of proteolytic matrix cleavage by MT1-MMP and the generation and sensing of force by cells, a model system was established which exploits the properties of a matrix array of parallel collagen-I fibers. The resulting an-isotropy of the matrix with high tensile strength along the fibers and high mobility perpendicular to it allows the convenient detection of bundling and cleavage of the collagen fibers, as well as spreading and durotaxis of the cells. In summary, we have demonstrated that cell adhesion, force generation, and force sensing are vital for the regulation of MT1-MMP for efficient cleavage of collagen-I.

6.
J Struct Biol ; 177(1): 119-27, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22068155

RESUMO

Cryo-electron microscopy is expanding its scope from macromolecules towards much larger and more complex cellular specimens such as organelles, cells and entire tissues. While isolated macromolecular specimens are typically composed of only very few different components that may be recognized by their shape, size or state of polymerization, cellular specimens combine large numbers of proteinaceous structures as well as nucleic acids and lipid arrays. Consequently, an unambiguous identification of these structures within the context of a whole cell may create a very difficult challenge. On plastic-embedded specimens, or Tokuyasu sections (Tokuyasu, 1980), epitopes that are exposed at the surface can be tagged by antibodies. However, vitrified sections have to be kept at strict cryo-conditions (below -140 °C) and therefore do not allow any post-sectioning treatment of the specimens other than data acquisition in the microscope. Hence, the labels have to be placed into the specimen before freezing. Here we report on the application of a small metal-clustering protein, metallothionein (MTH), as a clonable label capable of clustering metal atoms into a high-density particle with high spatial resolution. We tested MTH as a label for kinesin-decorated microtubules (MTs) as well as the building blocks of desmin intermediate filaments (IFs).


Assuntos
Clonagem Molecular , Microscopia Crioeletrônica , Metalotioneína/ultraestrutura , Desmina/genética , Desmina/ultraestrutura , Regulação da Expressão Gênica , Processamento de Imagem Assistida por Computador/métodos , Filamentos Intermediários/genética , Filamentos Intermediários/ultraestrutura , Metalotioneína/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Organelas/ultraestrutura , Estrutura Terciária de Proteína , Manejo de Espécimes/métodos
7.
J Cell Sci ; 124(Pt 11): 1857-66, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21558415

RESUMO

It is becoming increasingly evident that the micromechanics of cells and their environment determine cell fate and function as much as soluble molecular factors do. We hypothesized that extracellular matrix proteolysis by membrane type 1 matrix metalloproteinase (MT1-MMP) depends on adhesion, force generation and rigidity sensing of the cell. Melanoma cells (MV3 clone) stably transfected with MT1-MMP, or the empty vector as a control, served as the model system. α2ß1 integrins (cell adhesion), actin and myosin II (force generation and rigidity sensing) were blocked by their corresponding inhibitors (α2ß1 integrin antibodies, Cytochalasin D, blebbistatin). A novel, anisotropic matrix array of parallel, fluorescently labeled collagen-I fibrils was used. Cleavage and bundling of the collagen-I fibrils, and spreading and durotaxis of the cells on this matrix array could be readily discerned and quantified by a combined set-up for fluorescence and atomic force microscopy. In short, expression of the protease resulted in the generation of structural matrix defects, clearly indicated by gaps in the collagen lattice and loose fiber bundles. This key feature of matrix remodeling depended essentially on the functionality of α2ß1 integrin, the actin filament network and myosin II motor activity. Interference with any of these negatively impacted matrix cleavage and three-dimensional matrix entanglement of cells.


Assuntos
Adesão Celular , Matriz Extracelular/metabolismo , Estresse Mecânico , Anisotropia , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Citocalasina D/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Integrina alfa2beta1/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Microscopia de Força Atômica/métodos , Microscopia de Fluorescência , Miosina Tipo II/antagonistas & inibidores
8.
Mol Cancer Res ; 8(10): 1297-309, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21047731

RESUMO

The tyrosine kinase receptor EphB4 interacts with its ephrinB2 ligand to act as a bidirectional signaling system that mediates adhesion, migration, and guidance by controlling attractive and repulsive activities. Recent findings have shown that hematopoietic cells expressing EphB4 exert adhesive functions towards endothelial cells expressing ephrinB2. We therefore hypothesized that EphB4/ephrinB2 interactions may be involved in the preferential adhesion of EphB4-expressing tumor cells to ephrinB2-expressing endothelial cells. Screening of a panel of human tumor cell lines identified EphB4 expression in nearly all analyzed tumor cell lines. Human A375 melanoma cells engineered to express either full-length EphB4 or truncated EphB4 variants which lack the cytoplasmic catalytic domain (ΔC-EphB4) adhered preferentially to ephrinB2-expressing endothelial cells. Force spectroscopy by atomic force microscopy confirmed, on the single cell level, the rapid and direct adhesive interaction between EphB4 and ephrinB2. Tumor cell trafficking experiments in vivo using sensitive luciferase detection techniques revealed significantly more EphB4-expressing A375 cells but not ΔC-EphB4-expressing or mock-transduced control cells in the lungs, the liver, and the kidneys. Correspondingly, ephrinB2 expression was detected in the microvessels of these organs. The specificity of the EphB4-mediated tumor homing phenotype was validated by blocking the EphB4/ephrinB2 interaction with soluble EphB4-Fc. Taken together, these experiments identify adhesive EphB4/ephrinB2 interactions between tumor cells and endothelial cells as a mechanism for the site-specific metastatic dissemination of tumor cells. AACR.


Assuntos
Comunicação Celular , Movimento Celular , Endotélio Vascular/patologia , Efrina-B2/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Melanoma/secundário , Receptor EphB4/fisiologia , Animais , Adesão Celular/genética , Comunicação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Endotélio Vascular/metabolismo , Efrina-B2/biossíntese , Efrina-B2/genética , Humanos , Melanoma/irrigação sanguínea , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Receptor EphB4/metabolismo
9.
Methods Cell Biol ; 96: 565-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20869538

RESUMO

Together with microtubules and actin filaments (F-actin), intermediate filaments (IFs) form the cytoskeleton of metazoan cells. However, unlike the other two entities that are extremely conserved, IFs are much more diverse and are grouped into five different families. In contrast to microtubules and F-actin, IFs do not exhibit a polarity, which may be the reason that no molecular motors travel along them. The molecular structure of IFs is less well resolved than that of the other cytoskeletal systems. This is partially due to their functional variability, tissue-specific expression, and their intrinsic structural properties. IFs are composed mostly of relatively smooth protofibrils formed by antiparallel arranged α-helical coiled-coil bundles flanked by small globular domains at either end. These features make them difficult to study by various electron microscopy methods or atomic force microscopy (AFM). Furthermore, the elongated shape of monomeric or dimeric IF units interferes with the formation of highly ordered three-dimensional (3-D) crystals suitable for atomic resolution crystallography. So far, most of the data we currently have on IF macromolecular structures come from electron microscopy of negatively stained samples, and fragmented α-helical coiled-coil units solved by X-ray diffraction. In addition, AFM allows the observation of the dynamic states of IFs in solution and delivers a new view into the assembly properties of IFs. Here, we discuss the applicability of cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) for the field. Both methods are strongly related and have only recently been applied to IFs. However, cryo-EM revealed distinct new features within IFs that have not been seen before, and cryo-ET adds a 3-D view of IFs revealing the path and number of protofilaments within the various IF assemblies.


Assuntos
Microscopia Crioeletrônica/métodos , Imageamento Tridimensional/métodos , Filamentos Intermediários/ultraestrutura , Animais , Microscopia Crioeletrônica/instrumentação , Criopreservação/métodos , Desmina/ultraestrutura , Tomografia com Microscopia Eletrônica/instrumentação , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/instrumentação , Filamentos Intermediários/química , Microscopia de Força Atômica/instrumentação , Microscopia de Força Atômica/métodos , Coloração Negativa/métodos , Vimentina/ultraestrutura
10.
PLoS One ; 5(8): e12115, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20814582

RESUMO

Intermediate filaments (IFs) assembled in vitro from recombinantly expressed proteins have a diameter of 8-12 nm and can reach several micrometers in length. IFs assemble from a soluble pool of subunits, tetramers in the case of vimentin. Upon salt addition, the subunits form first unit length filaments (ULFs) within seconds and then assembly proceeds further by end-to-end fusion of ULFs and short filaments. So far, IF subunits have mainly been observed by electron microscopy of glycerol sprayed and rotary metal shadowed specimens. Due to the shear forces during spraying the IF subunits appear generally as straight thin rods. In this study, we used atomic force microscopy (AFM), cryo-electron microscopy (cryo-EM) combined with molecular modeling to investigate the conformation of the subunits of vimentin, desmin and keratin K5/K14 IFs in various conditions. Due to their anisotropic shape the subunits are difficult to image at high resolution by cryo-EM. In order to enhance contrast we used a cryo-negative staining approach. The subunits were clearly identified as thin, slightly curved rods. However the staining agent also forced the subunits to aggregate into two-dimensional networks of dot-like structures. To test this conformational change further, we imaged dried unfixed subunits on mica by AFM revealing a mixture of extended and dot-like conformations. The use of divalent ions such as calcium and magnesium, as well as glutaraldehyde exposure favored compact conformations over elongated ones. These experimental results as well as coarse-grained molecular dynamics simulations of a vimentin tetramer highlight the plasticity of IF subunits.


Assuntos
Proteínas de Filamentos Intermediários/química , Subunidades Proteicas/química , Microscopia Crioeletrônica , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/metabolismo
11.
PLoS One ; 4(11): e7756, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19888472

RESUMO

Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarily on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a 'trapping' mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these 'ideal' adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica ('ideal' trapping) and on glass ('ideal' equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions.


Assuntos
Biopolímeros/química , Microscopia de Força Atômica/métodos , Vimentina/genética , Adsorção , Silicatos de Alumínio/química , Simulação por Computador , Vidro , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Modelos Teóricos , Nanotecnologia/métodos , Polímeros/química , Proteínas Recombinantes/química , Propriedades de Superfície , Vimentina/química
12.
Mol Cancer Res ; 7(2): 168-79, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19208744

RESUMO

CD44 designates a large family of proteins with a considerable structural and functional diversity, which are generated from one gene by alternative splicing. As such, the overexpression of CD44 variant isoform (CD44v) has been causally related to the metastatic spread of cancer cells. To study the underlying mechanism, stable knockdown clones with deletion of exon v7 containing CD44 isoforms (CD44v(kd)) of the highly metastatic rat adenocarcinoma line BSp73ASML (ASML(wt)) were established. ASML-CD44v(kd) clones hardly form lung metastases after intrafootpad application and the metastatic load in lymph nodes is significantly reduced. Rescuing, albeit at a reduced level, CD44v expression in ASML-CD44v(kd) cells (ASML-CD44v(rsc)) restores the metastatic potential. The following major differences in ASML(wt), ASML-CD44v(kd), and ASML-CD44v(rsc) clones were observed: (a) ASML(wt) cells produce and assemble a matrix in a CD44v-dependent manner, which supports integrin-mediated adhesion and favors survival. This feature is lost in the ASML-CD44v(kd) cells. (b) CD44v cross-linking initiates phosphatidylinositol 3-kinase/Akt activation in ASML(wt) cells. Accordingly, apoptosis resistance is strikingly reduced in ASML-CD44v(kd) cells. The capacity to generate an adhesive matrix but not apoptosis resistance is restored in ASML-CD44v(rsc) cells. These data argue for a 2-fold effect of CD44v on metastasis formation: CD44v-mediated matrix formation is crucial for the settlement and growth at a secondary site, whereas apoptosis resistance supports the efficacy of metastasis formation.


Assuntos
Adenocarcinoma/secundário , Apoptose/genética , Adesão Celular/genética , Matriz Extracelular/metabolismo , Receptores de Hialuronatos/genética , Neoplasias Pulmonares/secundário , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Animais , Biotinilação , Western Blotting , Reagentes de Ligações Cruzadas/farmacologia , Matriz Extracelular/patologia , Feminino , Citometria de Fluxo , Inativação Gênica/fisiologia , Imunoprecipitação , Neoplasias Pulmonares/genética , Metástase Linfática , Microscopia de Força Atômica , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Endogâmicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Transfecção
13.
Langmuir ; 25(15): 8817-23, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20050052

RESUMO

The salt-induced in vitro assembly of cytoplasmic intermediate filament (IF) proteins such as vimentin is characterized by a very rapid lateral association of soluble tetrameric subunits into 60-nm-long full-width "unit-length" filaments (ULFs). We have demonstrated for this prototype IF protein that filament elongation occurs by the longitudinal annealing of ULFs into short IFs. These IFs further longitudinally anneal and thus constitute a progressively elongating filament population that over time yields filaments of several microm in length. Previously, we provided a mathematical model for the kinetics of the assembly process based on the average length distribution of filaments as determined by time-lapse electron and atomic force microscopy. Thereby, we were able to substantiate the concept that end-to-end-annealing of both ULFs and short filaments is obligatory for the formation of long IFs (Kirmse, R.; Portet, S.; Mücke, N. Aebi, U.; Herrmann, H.; Langowski, J. J. Biol. Chem. 2007, 282, 18563-18572). As the next step in understanding the mechanics of IF formation, we have expanded our mathematical model to describe the quantitative aspects of IF assembly by taking into account geometry constraints as well as the diffusion properties of rodlike linear aggregates. Thereby, we have developed a robust model for the time-dependent filament length distribution of IFs under standard conditions.


Assuntos
Filamentos Intermediários/metabolismo , Vimentina/química , Algoritmos , Animais , Bioquímica/métodos , Citoplasma/metabolismo , Elétrons , Técnicas In Vitro , Íons , Cinética , Microscopia de Força Atômica/métodos , Modelos Estatísticos , Modelos Teóricos , Proteínas/química , Fatores de Tempo
14.
J Cell Sci ; 121(Pt 22): 3842-50, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18957513

RESUMO

The vascular endothelium is a crucial interface that controls the recruitment of circulating leukocytes. Based on the luminal expression of the ephrin-B2 ligand by endothelial cells (ECs) and the expression of EphB receptors (EphBRs) by circulating monocytes, we hypothesized that EphBR-ephrinB interactions are involved in monocyte adhesion. Adhesion experiments with monocytic cells were performed on ECs that overexpressed either full-length ephrin-B2 or cytoplasmically truncated ephrin-B2 (DeltaC-ephrin-B2). Atomic force microscopy confirmed similar adhesive strengths of EphBR-expressing J774 cells to ECs that either overexpressed full-length ephrin-B2 or truncated DeltaC-ephrin-B2 (1-minute interaction). Yet, adhesion experiments under static or flow conditions for 30 minutes demonstrated the preferential adhesion of monocytic cells to ECs that overexpressed full-length ephrin-B2 but not to DeltaC-ephrin-B2 or to ECs that had been mock transduced. Adhesion was blocked by ephrin-B2-specific and EphBR-specific antibodies. Correspondingly, adhesion of EphB4-receptor-overexpressing monocytes to ephrin-B2-positive ECs was further augmented. Trafficking experiments of cell-surface molecules revealed that, prior to internalization, the resulting EphB4-receptor-ephrin-B2 complex translocated from the luminal surface to inter-endothelial junctions. Lastly, full-length ephrin-B2 in ECs was also involved in monocyte transmigration. Collectively, our study identifies a role of EphBR-ephrinB interactions as a new step in the cascade of events leading to monocyte adhesion and transmigration through the vascular endothelium.


Assuntos
Movimento Celular , Endotélio Vascular/fisiologia , Efrina-B2/metabolismo , Expressão Gênica , Monócitos/fisiologia , Receptor EphB2/metabolismo , Receptor EphB4/metabolismo , Animais , Adesão Celular , Linhagem Celular , Células Cultivadas , Efrina-B2/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptor EphB2/genética , Receptor EphB4/genética
15.
Langmuir ; 24(15): 8151-7, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18605707

RESUMO

We synthesized various graft copolymer films of poly(ethylene glycol) methacrylate (PEGMA) and methyl methacrylate (MMA) on silicon to examine the dependency of protein-surface interactions on grafting composition. We optimized atom transfer radical polymerizations to achieve film thicknesses from 25 to 100 nm depending on the monomer mole fractions, and analyzed the resulting surfaces by X-ray photoelectron spectroscopy (XPS), ellipsometry, contact angle measurements, and atomic force microscopy (AFM). As determined by XPS, the stoichiometric ratios of copolymer graftings correlated with the concentrations of provided monomer solutions. However, we found an unexpected and pronounced hydrophobic domain on copolymer films with a molar amount of 10-40% PEGMA, as indicated by advancing contact angles of up to 90 degrees . Nevertheless, a breakdown of the protein-repelling character was only observed for a fraction of 15% PEGMA and lower, far in the hydrophobic domain. Investigation of the structural basis of this exceptional wettability by high-resolution AFM demonstrated the independence of this property from morphological features.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Metilmetacrilatos/química , Polietilenoglicóis/química , Proteínas/química , Microscopia de Força Atômica , Estrutura Molecular , Propriedades de Superfície
16.
Pflugers Arch ; 456(1): 29-49, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18058123

RESUMO

The function of cells is strongly determined by the properties of their extracellular microenvironment. Biophysical parameters like environmental stiffness and fiber orientation in the surrounding matrix are important determinants of cell adhesion and migration. Processes like tissue maintenance, wound repair, cancer cell invasion, and morphogenesis depend critically on the ability of cells to actively sense and remodel their surroundings. Pericellular proteolytic activity and adaptation of migration tactics to the environment are strategies to achieve this aim. Little is known about the distinct regulatory mechanisms that are involved in these processes. The system's critical biophysical and biochemical determinants are well accessible by atomic force microscopy (AFM), a unique tool for functional, nanoscale probing and morphometric, high-resolution imaging of processes in live cells. This review highlights common principles of tissue remodeling and focuses on application examples of different AFM techniques, for example elasticity mapping, the combination of AFM and fluorescence microscopy, the morphometric imaging of proteolytic activity, and force spectroscopy applications of single molecules or individual cells. To achieve a more complete understanding of the processes underlying the interaction of cells with their environments, the combination of AFM force spectroscopy experiments will be essential.


Assuntos
Fenômenos Fisiológicos Celulares , Células/citologia , Microscopia de Força Atômica , Animais , Fenômenos Biomecânicos , Fenômenos Biofísicos , Biofísica , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células/ultraestrutura , Humanos
17.
J Biol Chem ; 282(25): 18563-18572, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17403663

RESUMO

In vitro assembly of intermediate filament proteins is a very rapid process. It starts without significant delay by lateral association of tetramer complexes into unit-length filaments (ULFs) after raising the ionic strength from low salt to physiological conditions (100 mM KCl). We employed electron and scanning force microscopy complemented by mathematical modeling to investigate the kinetics of in vitro assembly of human recombinant vimentin. From the average length distributions of the resulting filaments measured at increasing assembly times we simulated filament assembly and estimated specific reaction rate parameters. We modeled eight different potential pathways for vimentin filament elongation. Comparing the numerical with the experimental data we conclude that a two-step mechanism involving rapid formation of ULFs followed by ULF and filament annealing is the most robust scenario for vimentin assembly. These findings agree with the first two steps of the previously proposed three-step assembly model (Herrmann, H., and Aebi, U. (1998) Curr. Opin. Struct. Biol. 8, 177-185). In particular, our modeling clearly demonstrates that end-to-end annealing of ULFs and filaments is obligatory for forming long filaments, whereas tetramer addition to filament ends does not contribute significantly to filament elongation.


Assuntos
Filamentos Intermediários/metabolismo , Vimentina/química , Interpretação Estatística de Dados , Escherichia coli/metabolismo , Humanos , Íons , Cinética , Microscopia de Força Atômica , Microscopia Eletrônica , Modelos Biológicos , Modelos Teóricos , Cloreto de Potássio/farmacologia , Conformação Proteica , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA