Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(7): e0180740, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700619

RESUMO

Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.


Assuntos
Mapeamento Encefálico/métodos , Idioma , Monitorização Intraoperatória/métodos , Adulto , Estimulação Elétrica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Resultado do Tratamento
2.
Neuroimage ; 142: 674-686, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402597

RESUMO

OBJECTIVE: Although simultaneous recording of EEG and MRI has gained increasing popularity in recent years, the extent of its clinical use remains limited by various technical challenges. Motion interference is one of the major challenges in EEG-fMRI. Here we present an approach which reduces its impact with the aid of an MR compatible dual-array EEG (daEEG) in which the EEG itself is used both as a brain signal recorder and a motion sensor. METHODS: We implemented two arrays of EEG electrodes organized into two sets of nearly orthogonally intersecting wire bundles. The EEG was recorded using referential amplifiers inside a 3T MR-scanner. Virtual bipolar measurements were taken both along bundles (creating a small wire loop and therefore minimizing artifact) and across bundles (creating a large wire loop and therefore maximizing artifact). Independent component analysis (ICA) was applied. The resulting ICA components were classified into brain signal and noise using three criteria: 1) degree of two-dimensional spatial correlation between ICA coefficients along bundles and across bundles; 2) amplitude along bundles vs. across bundles; 3) correlation with ECG. The components which passed the criteria set were transformed back to the channel space. Motion artifact suppression and the ability to detect interictal epileptic spikes following daEEG and Optimal Basis Set (OBS) procedures were compared in 10 patients with epilepsy. RESULTS: The SNR achieved by daEEG was 11.05±3.10 and by OBS was 8.25±1.01 (p<0.00001). In 9 of 10 patients, more spikes were detected after daEEG than after OBS (p<0.05). SIGNIFICANCE: daEEG improves signal quality in EEG-fMRI recordings, expanding its clinical and research potential.


Assuntos
Artefatos , Córtex Cerebral/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/normas , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Criança , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Feminino , Humanos , Masculino , Adulto Jovem
3.
J Neurosci ; 35(38): 13194-205, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400948

RESUMO

Sleep deprivation has been shown recently to alter emotional processing possibly associated with reduced frontal regulation. Such impairments can ultimately fail adaptive attempts to regulate emotional processing (also known as cognitive control of emotion), although this hypothesis has not been examined directly. Therefore, we explored the influence of sleep deprivation on the human brain using two different cognitive-emotional tasks, recorded using fMRI and EEG. Both tasks involved irrelevant emotional and neutral distractors presented during a competing cognitive challenge, thus creating a continuous demand for regulating emotional processing. Results reveal that, although participants showed enhanced limbic and electrophysiological reactions to emotional distractors regardless of their sleep state, they were specifically unable to ignore neutral distracting information after sleep deprivation. As a consequence, sleep deprivation resulted in similar processing of neutral and negative distractors, thus disabling accurate emotional discrimination. As expected, these findings were further associated with a decrease in prefrontal connectivity patterns in both EEG and fMRI signals, reflecting a profound decline in cognitive control of emotion. Notably, such a decline was associated with lower REM sleep amounts, supporting a role for REM sleep in overnight emotional processing. Altogether, our findings suggest that losing sleep alters emotional reactivity by lowering the threshold for emotional activation, leading to a maladaptive loss of emotional neutrality. Significance statement: Sleep loss is known as a robust modulator of emotional reactivity, leading to increased anxiety and stress elicited by seemingly minor triggers. In this work, we aimed to portray the neural basis of these emotional impairments and their possible association with frontal regulation of emotional processing, also known as cognitive control of emotion. Using specifically suited EEG and fMRI tasks, we were able to show that sleep deprivation alters emotional reactivity by triggering enhanced processing of stimuli regarded previously as neutral. These changes were further accompanied by diminished frontal connectivity, reduced REM sleep, and poorer performance. Therefore, we suggest that sleep loss alters emotional reactivity by lowering the threshold for emotional activation, leading to a maladaptive loss of emotional neutrality.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiopatologia , Potenciais Evocados Visuais/fisiologia , Transtornos do Humor/etiologia , Transtornos do Humor/patologia , Privação do Sono/complicações , Adulto , Análise de Variância , Encéfalo/irrigação sanguínea , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Luminosa , Tempo de Reação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA