Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(9): e0012083, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39269988

RESUMO

Crimean Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic disease caused by CCHF virus (CCHFV). The disease has a complex transmission cycle that involves a wide range of hosts including mammalian and some species of birds. We implemented a sero-epidemiological study in Isiolo County, Kenya, to determine relative seroprevalences of CCHFV in humans, livestock and in wild animals. In addition, we identified subject and environment level factors that could promote exposure to CCHFV. Humans (n = 580) and livestock (n = 2,137) were recruited into the study through a multistage random sampling technique, and in addition, various species of wild animals (n = 87) were also sampled conveniently. Serum samples from all recruited humans and animals were collected and screened for CCHFV antibodies using ID Screen multispecies, double-antigen IgG enzyme-linked immunosorbent assay (ELISA). The overall anti-CCHFV IgG seroprevalences in humans, cattle, goats, sheep and camels were 7.2% [95% CI: 3.1-15.8%], 53.9% [95% CI: 30.7-50.9%], 11.6% [95% CI: 7.2-22.5%], 8.6% [95% CI: 3-14%] and 89.7% [95% CI: 78-94%], respectively. On average, the sampled wild animals had CCHFV seroprevalence of 41.0% [95% CI: 29.1-49.4%]; giraffes had the highest mean CCHF seroprevalence followed by buffaloes, while impala had very low exposure levels. Statistical analyses using mixed effects logistic regression models showed that CCHFV exposure in humans was significantly associated with male gender, being over 30 years of age and belonging to a household with a seropositive herd. In livestock, a combination of animal- and environment level factors including older animals, being in an area with high normalized difference vegetation index (NDVI) and high vapour pressure deficit were significantly associated with CCHFV infection. Age, sex and species of wild animals were considered as the key risk factors in the analysis, but none of these variables was significant (P-value = 0.891, 0.401 and 0.664, respectively). Additionally, RT-qPCR analysis revealed the presence of CCHFV RNA in camels (30%), cattle (14.3%), and goats (3.8%), but not in humans, sheep, or wild animals. This study demonstrates that environmental factors, such as NDVI and vapor pressure deficit, affect CCHFV exposure in livestock, while the presence of infected livestock is the key determinant of human exposure at the household level. These findings underscore the importance of using One Health approaches to control the disease in human-livestock-wildlife interfaces. For instance, the existing CCHF surveillance measures could be enhanced by incorporating algorithms that simulate disease risk based on the environmental factors identified in the study. Additionally, tick control in livestock, such as the use of acaricides, could reduce CCHFV exposure in livestock and, consequently, in humans.


Assuntos
Animais Selvagens , Anticorpos Antivirais , Cabras , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Gado , Animais , Quênia/epidemiologia , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/transmissão , Febre Hemorrágica da Crimeia/veterinária , Febre Hemorrágica da Crimeia/virologia , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Masculino , Animais Selvagens/virologia , Gado/virologia , Feminino , Estudos Soroepidemiológicos , Fatores de Risco , Anticorpos Antivirais/sangue , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Ovinos , Bovinos , Zoonoses/transmissão , Zoonoses/epidemiologia , Zoonoses/virologia , Criança , Idoso , Imunoglobulina G/sangue , Ensaio de Imunoadsorção Enzimática , Pré-Escolar , Camelus/virologia
2.
One Health ; 17: 100646, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024269

RESUMO

Understanding antibiotic use in livestock systems is key in combating antimicrobial resistance (AMR) and developing effective interventions. Using a standardised questionnaire, we investigated the patterns and drivers of antibiotic use in 165 cattle farms across the three major cattle production systems in Kenya: intensive, extensive, and semi-intensive systems across in three counties: Machakos, Makueni and Narok in Kenya. We used a causal diagram to inform regression models to explore the drivers of antibiotic use in the study farms. Antibiotic use was reported in 92.7% of farms, primarily for prophylactic purposes. Oxytetracycline, penicillin, and streptomycin were the most used antibiotics to treat and control the most reported diseases including mastitis, diarrhoea and East Coast fever (ECF). Regression analysis indicated a positive association between the frequency of antibiotic use at the farm level and both disease incidence and herd size. Conversely, farms that provided cattle with appropriate housing were less likely to use antibiotics, and there was no difference in antibiotic use between those who consulted with veterinarians or sourced antibiotics directly from animal health providers. Our study highlights the complexities around understanding the interplay between practices and drivers of antibiotic use. It also underscores the necessity to enhance education regarding the appropriate usage of antibiotics among cattle farmers, encourage the adoption of proper herd management practices which may reduce disease burden, and reinforce veterinary services and supportive legislation to promote the prudent use of antimicrobials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA