Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Tissue Eng Part A ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832856

RESUMO

BACKGROUND: The persistent challenge of organ scarcity in liver transplantation leads to an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) is used for improved preservation. Due to the mimicked in vivo conditions during normothermic machine perfusion, the liver is metabolic active, which allows quality assessment during perfusion. Bile seems to be of rising interest in clinical studies since it is easily collectible for analysis. As there is currently no data on biliary bile acids during NMP, the primary objective of this study was to use our experimental rodent NMP model to assess changes in bile composition through organ damage during perfusion to inform clinical evaluation of donor organs during NMP. METHODS: 30 livers from male Sprague Dawley rats in five groups and underwent 6 hours of NMP using either erythrocyte-supplemented DMEM or Steen solution, with or without 30min of warm ischemia time (WIT). We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at three-hour intervals. Bile samples were analyzed for biliary pH, LDH and GGT as well as biliary bile acids via mass spectrometry and UHPLC. RESULTS: Compared to regular livers, liver injury parameters were significantly higher in our donation after circulatory death (DCD) model. Bile production was significantly reduced in livers exposed to WIT, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers experiencing WIT. However, regular livers produced a higher total amount of biliary bile acids during perfusion. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced during perfusion due to the missing enterohepatic circulation. CONCLUSIONS: WIT-induced liver injury affects bile composition within our small animal NMP model. We hypothesize this phenomenon to be attributed to the energy-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile. Our results may inform clinical studies, in which biliary bile acids might have a potential as a quantifiable viability marker in human NMP liver transplantation studies.

2.
Biomaterials ; 309: 122614, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38788455

RESUMO

The extracellular matrix is known to impact cell function during regeneration by modulating growth factor signaling. However, how the mechanical properties and structure of biomaterials can be used to optimize the cellular response to growth factors is widely neglected. Here, we engineered a macroporous biomaterial to study cellular signaling in environments that mimic the mechanical stiffness but also the mechanical heterogeneity of native extracellular matrix. We found that the mechanical interaction of cells with the heterogeneous and non-linear deformation properties of soft matrices (E < 5 kPa) enhances BMP-2 growth factor signaling with high relevance for tissue regeneration. In contrast, this effect is absent in homogeneous hydrogels that are often used to study cell responses to mechanical cues. Live cell imaging and in silico finite element modeling further revealed that a subpopulation of highly active, fast migrating cells is responsible for most of the material deformation, while a second, less active population experiences this deformation as an extrinsic mechanical stimulation. At an overall low cell density, the active cell population dominates the process, suggesting that it plays a particularly important role in early tissue healing scenarios where cells invade tissue defects or implanted biomaterials. Taken together, our findings demonstrate that the mechanical heterogeneity of the natural extracellular matrix environment plays an important role in triggering regeneration by endogenously acting growth factors. This suggests the inclusion of such mechanical complexity as a design parameter in future biomaterials, in addition to established parameters such as mechanical stiffness and stress relaxation.


Assuntos
Materiais Biocompatíveis , Proteína Morfogenética Óssea 2 , Matriz Extracelular , Hidrogéis , Transdução de Sinais , Proteína Morfogenética Óssea 2/metabolismo , Materiais Biocompatíveis/química , Humanos , Matriz Extracelular/metabolismo , Hidrogéis/química , Animais , Camundongos , Movimento Celular
3.
PLoS One ; 19(5): e0303496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739622

RESUMO

INTRODUCTION: Rheumatic heart disease (RHD), degenerative aortic stenosis (AS), and congenital valve diseases are prevalent in sub-Saharan Africa. Many knowledge gaps remain in understanding disease mechanisms, stratifying phenotypes, and prognostication. Therefore, we aimed to characterise patients through clinical profiling, imaging, histology, and molecular biomarkers to improve our understanding of the pathophysiology, diagnosis, and prognosis of RHD and AS. METHODS: In this cross-sectional, case-controlled study, we plan to recruit RHD and AS patients and compare them to matched controls. Living participants will undergo clinical assessment, echocardiography, CMR and blood sampling for circulatory biomarker analyses. Tissue samples will be obtained from patients undergoing valve replacement, while healthy tissues will be obtained from cadavers. Immunohistology, proteomics, metabolomics, and transcriptome analyses will be used to analyse circulatory- and tissue-specific biomarkers. Univariate and multivariate statistical analyses will be used for hypothesis testing and identification of important biomarkers. In summary, this study aims to delineate the pathophysiology of RHD and degenerative AS using multiparametric CMR imaging. In addition to discover novel biomarkers and explore the pathomechanisms associated with RHD and AS through high-throughput profiling of the tissue and blood proteome and metabolome and provide a proof of concept of the suitability of using cadaveric tissues as controls for cardiovascular disease studies.


Assuntos
Estenose da Valva Aórtica , Biomarcadores , Cardiopatia Reumática , Humanos , Cardiopatia Reumática/diagnóstico por imagem , Cardiopatia Reumática/fisiopatologia , Cardiopatia Reumática/metabolismo , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/fisiopatologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Masculino , Feminino , Metabolômica/métodos , Ecocardiografia/métodos , Proteômica/métodos , Imageamento por Ressonância Magnética/métodos , Multiômica
4.
Nat Commun ; 15(1): 2788, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555356

RESUMO

Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Monócitos , Anti-Infecciosos/farmacologia , Klebsiella pneumoniae , Pulmão
5.
Cardiovasc Res ; 120(6): 644-657, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38309955

RESUMO

AIMS: Virus infection triggers inflammation and, may impose nutrient shortage to the heart. Supported by type I interferon (IFN) signalling, cardiomyocytes counteract infection by various effector processes, with the IFN-stimulated gene of 15 kDa (ISG15) system being intensively regulated and protein modification with ISG15 protecting mice Coxsackievirus B3 (CVB3) infection. The underlying molecular aspects how the ISG15 system affects the functional properties of respective protein substrates in the heart are unknown. METHODS AND RESULTS: Based on the protective properties due to protein ISGylation, we set out a study investigating CVB3-infected mice in depth and found cardiac atrophy with lower cardiac output in ISG15-/- mice. By mass spectrometry, we identified the protein targets of the ISG15 conjugation machinery in heart tissue and explored how ISGylation affects their function. The cardiac ISGylome showed a strong enrichment of ISGylation substrates within glycolytic metabolic processes. Two control enzymes of the glycolytic pathway, hexokinase 2 (HK2) and phosphofructokinase muscle form (PFK1), were identified as bona fide ISGylation targets during infection. In an integrative approach complemented with enzymatic functional testing and structural modelling, we demonstrate that protein ISGylation obstructs the activity of HK2 and PFK1. Seahorse-based investigation of glycolysis in cardiomyocytes revealed that, by conjugating proteins, the ISG15 system prevents the infection-/IFN-induced up-regulation of glycolysis. We complemented our analysis with proteomics-based advanced computational modelling of cardiac energy metabolism. Our calculations revealed an ISG15-dependent preservation of the metabolic capacity in cardiac tissue during CVB3 infection. Functional profiling of mitochondrial respiration in cardiomyocytes and mouse heart tissue by Seahorse technology showed an enhanced oxidative activity in cells with a competent ISG15 system. CONCLUSION: Our study demonstrates that ISG15 controls critical nodes in cardiac metabolism. ISG15 reduces the glucose demand, supports higher ATP production capacity in the heart, despite nutrient shortage in infection, and counteracts cardiac atrophy and dysfunction.


Assuntos
Infecções por Coxsackievirus , Citocinas , Metabolismo Energético , Glicólise , Mitocôndrias Cardíacas , Miócitos Cardíacos , Ubiquitinas , Animais , Humanos , Masculino , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Infecções por Coxsackievirus/genética , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/metabolismo , Interações Hospedeiro-Patógeno , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Miócitos Cardíacos/patologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Ubiquitinas/metabolismo , Ubiquitinas/genética
6.
Front Cardiovasc Med ; 11: 1247472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361581

RESUMO

Objective: Cold-inducible RNA binding Protein (CIRBP) has been shown to be a potent inflammatory mediator and could serve as a novel biomarker for inflammation. Systemic inflammatory response syndrome (SIRS) and capillary leak syndrome (CLS) are frequent complications after pediatric cardiac surgery increasing morbidity, therefore early diagnosis and therapy is crucial. As CIRBP serum levels have not been analyzed in a pediatric population, we conducted a clinical feasibility establishing a customized magnetic bead panel analyzing CIRBP in pediatric patients undergoing cardiac surgery. Methods: A prospective hypothesis generating observational clinical study was conducted at the German Heart Center Berlin during a period of 9 months starting in May 2020 (DRKS00020885, https://drks.de/search/de/trial/DRKS00020885). Serum samples were obtained before the cardiac operation, upon arrival at the pediatric intensive care unit, 6 and 24 h after the operation in patients up to 18 years of age with congenital heart disease (CHD). Customized multiplex magnetic bead-based immunoassay panels were developed to analyze CIRBP, Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), Monocyte chemotactic protein 1 (MCP-1), Syndecan-1 (SDC-1), Thrombomodulin (TM), Vascular endothelial growth factor (VEGF-A), Angiopoietin-2 (Ang-2), and Fibroblast growth factor 23 (FGF-23) in 25 µl serum using the Luminex MagPix® system. Results: 19 patients representing a broad range of CHD (10 male patients, median age 2 years, 9 female patients, median age 3 years) were included in the feasibility study. CIRBP was detectable in the whole patient cohort. Relative to individual baseline values, CIRBP concentrations increased 6 h after operation and returned to baseline levels over time. IL-6, IL-8, IL-10, and MCP-1 concentrations were significantly increased after operation and except for MCP-1 concentrations stayed upregulated over time. SDC-1, TM, Ang-2, as well as FGF-23 concentrations were also significantly increased, whereas VEGF-A concentration was significantly decreased after surgery. Discussion: Using customized magnetic bead panels, we were able to detect CIRBP in a minimal serum volume (25 µl) in all enrolled patients. To our knowledge this is the first clinical study to assess CIRBP serum concentrations in a pediatric population.

7.
J Proteome Res ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318665

RESUMO

Many metabolomic studies are interested in both polar and nonpolar analyses. However, the available sample volume often precludes multiple separate extractions. Therefore, there are major advantages in performing a biphasic extraction and retaining both phases for subsequent separate analyses. To be successful, such approaches require the method to be robust and repeatable for both phases. Hence, we determined the performance of three extraction protocols, plus two variant versions, using 25 µL of commercially available mouse plasma. The preferred option for nonpolar lipids was a modified diluted version of a method employing methyl tert-butyl ether (MTBE) suggested by Matyash and colleagues due to its high repeatability for nonpolar compounds. For polar compounds, the Bligh-Dyer method performs best for sensitivity but with consequentially poorer lipid performance. Overall, the scaled-down version of the MTBE method gave the best overall performance, with high sensitivity for both polar and nonpolar compounds and good repeatability for polar compounds in particular.

8.
Cancer Discov ; 14(3): 492-507, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197697

RESUMO

DNA amplifications in cancer do not only harbor oncogenes. We sought to determine whether passenger coamplifications could create collateral therapeutic vulnerabilities. Through an analysis of >3,000 cancer genomes followed by the interrogation of CRISPR-Cas9 loss-of-function screens across >700 cancer cell lines, we determined that passenger coamplifications are accompanied by distinct dependency profiles. In a proof-of-principle study, we demonstrate that the coamplification of the bona fide passenger gene DEAD-Box Helicase 1 (DDX1) creates an increased dependency on the mTOR pathway. Interaction proteomics identified tricarboxylic acid (TCA) cycle components as previously unrecognized DDX1 interaction partners. Live-cell metabolomics highlighted that this interaction could impair TCA activity, which in turn resulted in enhanced mTORC1 activity. Consequently, genetic and pharmacologic disruption of mTORC1 resulted in pronounced cell death in vitro and in vivo. Thus, structurally linked coamplification of a passenger gene and an oncogene can result in collateral vulnerabilities. SIGNIFICANCE: We demonstrate that coamplification of passenger genes, which were largely neglected in cancer biology in the past, can create distinct cancer dependencies. Because passenger coamplifications are frequent in cancer, this principle has the potential to expand target discovery in oncology. This article is featured in Selected Articles from This Issue, p. 384.


Assuntos
Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Oncologia , Morte Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
9.
Arthritis Rheumatol ; 76(1): 48-58, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471465

RESUMO

OBJECTIVE: Spondyloarthritis (SpA) is a group of immune-mediated diseases highly concomitant with nonmusculoskeletal inflammatory disorders, such as acute anterior uveitis (AAU) and Crohn's disease (CD). The gut microbiome represents a promising avenue to elucidate shared and distinct underlying pathophysiology. METHODS: We performed 16S ribosomal RNA sequencing on stool samples of 277 patients (72 CD, 103 AAU, and 102 SpA) included in the German Spondyloarthritis Inception Cohort and 62 back pain controls without any inflammatory disorder. Discriminatory statistical methods were used to disentangle microbial disease signals from one another and a wide range of potential confounders. Patients were naive to or had not received treatment with biological disease-modifying antirheumatic drugs (DMARDs) for >3 months before enrollment, providing a better approximation of a true baseline disease signal. RESULTS: We identified a shared, immune-mediated disease signal represented by low abundances of Lachnospiraceae taxa relative to controls, most notably Fusicatenibacter, which was most abundant in controls receiving nonsteroidal antiinflammatory drug monotherapy and implied to partially mediate higher serum C-reactive protein. Patients with SpA showed an enrichment of Collinsella, whereas human leukocyte antigen (HLA)-B27+ individuals displayed enriched Faecalibacterium. CD patients had higher abundances of a Ruminococcus taxon, and previous conventional/synthetic DMARD therapy was associated with increased Akkermansia. CONCLUSION: Our work supports the existence of a common gut dysbiosis in SpA and related inflammatory pathologies. We reveal shared and disease-specific microbial associations and suggest potential mediators of disease activity. Validation studies are needed to clarify the role of Fusicatenibacter in gut-joint inflammation, and metagenomic resolution is needed to understand the relationship between Faecalibacterium commensals and HLA-B27.


Assuntos
Antirreumáticos , Doença de Crohn , Microbioma Gastrointestinal , Espondilartrite , Uveíte Anterior , Humanos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/complicações , Microbioma Gastrointestinal/genética , Espondilartrite/tratamento farmacológico , Espondilartrite/complicações , Uveíte Anterior/tratamento farmacológico , Clostridiales/metabolismo , Antígeno HLA-B27/genética , Doença Aguda
10.
Cardiovasc Res ; 119(18): 2902-2916, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37842925

RESUMO

AIMS: Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS: This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS: Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.


Assuntos
Cardiomiopatias , Coração , Animais , Feminino , Masculino , Camundongos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Miocárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Caracteres Sexuais
11.
Anal Chem ; 95(51): 18645-18654, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055671

RESUMO

Untargeted metabolomics is an analytical approach with numerous applications serving as an effective metabolic phenotyping platform to characterize small molecules within a biological system. Data quality can be challenging to evaluate and demonstrate in metabolomics experiments. This has driven the use of pooled quality control (QC) samples for monitoring and, if necessary, correcting for analytical variance introduced during sample preparation and data acquisition stages. Described herein is a scoping literature review detailing the use of pooled QC samples in published untargeted liquid chromatography-mass spectrometry (LC-MS) based metabolomics studies. A literature query was performed, the list of papers was filtered, and suitable articles were randomly sampled. In total, 109 papers were each reviewed by at least five reviewers, answering predefined questions surrounding the use of pooled quality control samples. The results of the review indicate that use of pooled QC samples has been relatively widely adopted by the metabolomics community and that it is used at a similar frequency across biological taxa and sample types in both small- and large-scale studies. However, while many studies generated and analyzed pooled QC samples, relatively few reported the use of pooled QC samples to improve data quality. This demonstrates a clear opportunity for the field to more frequently utilize pooled QC samples for quality reporting, feature filtering, analytical drift correction, and metabolite annotation. Additionally, our survey approach enabled us to assess the ambiguity in the reporting of the methods used to describe the generation and use of pooled QC samples. This analysis indicates that many details of the QC framework are missing or unclear, limiting the reader's ability to determine which QC steps have been taken. Collectively, these results capture the current state of pooled QC sample usage and highlight existing strengths and deficiencies as they are applied in untargeted LC-MS metabolomics.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Controle de Qualidade
12.
Metabolites ; 13(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233706

RESUMO

Untargeted metabolomics is an important tool in studying health and disease and is employed in fields such as biomarker discovery and drug development, as well as precision medicine. Although significant technical advances were made in the field of mass-spectrometry driven metabolomics, instrumental drifts, such as fluctuations in retention time and signal intensity, remain a challenge, particularly in large untargeted metabolomics studies. Therefore, it is crucial to consider these variations during data processing to ensure high-quality data. Here, we will provide recommendations for an optimal data processing workflow using intrastudy quality control (QC) samples that identifies errors resulting from instrumental drifts, such as shifts in retention time and metabolite intensities. Furthermore, we provide an in-depth comparison of the performance of three popular batch-effect correction methods of different complexity. By using different evaluation metrics based on QC samples and a machine learning approach based on biological samples, the performance of the batch-effect correction methods were evaluated. Here, the method TIGER demonstrated the overall best performance by reducing the relative standard deviation of the QCs and dispersion-ratio the most, as well as demonstrating the highest area under the receiver operating characteristic with three different probabilistic classifiers (Logistic regression, Random Forest, and Support Vector Machine). In summary, our recommendations will help to generate high-quality data that are suitable for further downstream processing, leading to more accurate and meaningful insights into the underlying biological processes.

14.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674708

RESUMO

Periods of low energy supply are challenging conditions for organisms and cells during fasting or famine. Although changes in nutrient levels in the blood are first sensed by endothelial cells, studies on their metabolic adaptations to diminished energy supply are lacking. We analyzed the dynamic metabolic activity of human umbilical vein endothelial cells (HUVECs) in basal conditions and after serum starvation. Metabolites of glycolysis, the tricarboxylic acid (TCA) cycle, and the glycerol pathway showed lower levels after serum starvation, whereas amino acids had increased levels. A metabolic flux analysis with 13C-glucose or 13C-glutamine labeling for different time points reached a plateau phase of incorporation after 30 h for 13C-glucose and after 8 h for 13C-glutamine under both experimental conditions. Notably, we observed a faster label incorporation for both 13C-glucose and 13C-glutamine after serum starvation. In the linear range of label incorporation after 3 h, we found a significantly faster incorporation of central carbon metabolites after serum starvation compared to the basal state. These findings may indicate that endothelial cells develop increased metabolic activity to cope with energy deficiency. Physiologically, it can be a prerequisite for endothelial cells to form new blood vessels under unfavorable conditions during the process of angiogenesis in vivo.


Assuntos
Glutamina , Inanição , Humanos , Glutamina/metabolismo , Aminoácidos/metabolismo , Glicólise , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo
15.
Cardiovasc Res ; 119(6): 1441-1452, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35904261

RESUMO

AIMS: Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS: 4-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/day) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory faecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSION: The microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Microbiota , Animais , Masculino , Camundongos , Inflamação , Camundongos Endogâmicos C57BL
16.
Metabolomics ; 18(10): 77, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181583

RESUMO

Single cell metabolomics is an emerging and rapidly developing field that complements developments in single cell analysis by genomics and proteomics. Major goals include mapping and quantifying the metabolome in sufficient detail to provide useful information about cellular function in highly heterogeneous systems such as tissue, ultimately with spatial resolution at the individual cell level. The chemical diversity and dynamic range of metabolites poses particular challenges for detection, identification and quantification. In this review we discuss both significant technical issues of measurement and interpretation, and progress toward addressing them, with recent examples from diverse biological systems. We provide a framework for further directions aimed at improving workflow and robustness so that such analyses may become commonly applied, especially in combination with metabolic imaging and single cell transcriptomics and proteomics.


Assuntos
Metaboloma , Metabolômica , Metabolômica/métodos , Proteômica , Fluxo de Trabalho
17.
J Am Soc Nephrol ; 33(12): 2259-2275, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985814

RESUMO

BACKGROUND: CKD is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (with normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis [HD], or kidney transplantation) with a mean±SD age of 10.6±3.8 years. RESULTS: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from patients on HD activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classic to nonclassic and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in patients on HD. CONCLUSIONS: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the proinflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Fator de Necrose Tumoral alfa , Criança , Adolescente
18.
Metabolomics ; 18(9): 70, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36029375

RESUMO

BACKGROUND: Demonstrating that the data produced in metabolic phenotyping investigations (metabolomics/metabonomics) is of good quality is increasingly seen as a key factor in gaining acceptance for the results of such studies. The use of established quality control (QC) protocols, including appropriate QC samples, is an important and evolving aspect of this process. However, inadequate or incorrect reporting of the QA/QC procedures followed in the study may lead to misinterpretation or overemphasis of the findings and prevent future metanalysis of the body of work. OBJECTIVE: The aim of this guidance is to provide researchers with a framework that encourages them to describe quality assessment and quality control procedures and outcomes in mass spectrometry and nuclear magnetic resonance spectroscopy-based methods in untargeted metabolomics, with a focus on reporting on QC samples in sufficient detail for them to be understood, trusted and replicated. There is no intent to be proscriptive with regard to analytical best practices; rather, guidance for reporting QA/QC procedures is suggested. A template that can be completed as studies progress to ensure that relevant data is collected, and further documents, are provided as on-line resources. KEY REPORTING PRACTICES: Multiple topics should be considered when reporting QA/QC protocols and outcomes for metabolic phenotyping data. Coverage should include the role(s), sources, types, preparation and uses of the QC materials and samples generally employed in the generation of metabolomic data. Details such as sample matrices and sample preparation, the use of test mixtures and system suitability tests, blanks and technique-specific factors are considered and methods for reporting are discussed, including the importance of reporting the acceptance criteria for the QCs. To this end, the reporting of the QC samples and results are considered at two levels of detail: "minimal" and "best reporting practice" levels.


Assuntos
Metabolômica , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Controle de Qualidade
19.
Metabolites ; 12(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35629956

RESUMO

The identification of endogenous metabolites has great potential for understanding the underlying tissue processes occurring in either a homeostatic or a diseased state. The application of gas chromatography-mass spectrometry (GC-MS)-based metabolomics on musculoskeletal tissue samples has gained traction. However, limited comparison studies exist evaluating the sensitivity, reproducibility, and robustness of the various existing extraction protocols for musculoskeletal tissues. Here, we evaluated polar metabolite extraction from bone and muscle of mouse origin. The extraction methods compared were (1) modified Bligh-Dyer (mBD), (2) low chloroform (CHCl3)-modified Bligh-Dyer (mBD-low), and (3) modified Matyash (mMat). In particular, the central carbon metabolites (CCM) appear to be relevant for musculoskeletal regeneration, given their role in energy metabolism. However, the sensitivity, reproducibility, and robustness of these methods for detecting targeted polar CCM remains unknown. Overall, the extraction of metabolites using the mBD, mBD-low, and mMat methods appears sufficiently robust and reproducible for bone, with the mBD method slightly bettering the mBD-low and mMat methods. Furthermore, mBD, mBD-low, and mMat were sufficiently sensitive in detecting polar metabolites extracted from mouse muscle; however, they lacked repeatability. This study highlights the need for a re-thinking, towards a tissue-specific optimization of methods for metabolite extractions, ensuring sufficient sensitivity, repeatability, and robustness.

20.
Sci Rep ; 12(1): 7933, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562573

RESUMO

The AbsoluteIDQ p400 HR kit is a commercial product for targeted metabolomics. While the kit has been validated for human plasma and serum, adherent cell lysates have not yet been evaluated. We have optimized the detection of polar and lipid metabolites in cell lysates using the kit to enable robust and repeatable analysis of the detected metabolites. Parameters optimized include total cell mass, loading volume and extraction solvent. We present a cell preparation and analytical method and report on the performance of the kit with regard to detectability of the targeted metabolites and their repeatability. The kit can be successfully used for a relative quantification analysis of cell lysates from adherent cells although validated only for human plasma and serum. Most metabolites are below the limit of the Biocrates' set quantification limits and we confirmed that this relative quantification can be used for further statistical analysis. Using this approach, up to 45% of the total metabolites in the kit can be detected with a reasonable analytical performance (lowest median RSD 9% and 13% for LC and FIA, respectively) dependent on the method used. We recommend using ethanol as the extraction solvent for cell lysates of osteosarcoma cell lines for the broadest metabolite coverage and 25 mg of cell mass with a loading volume of 20 µL per sample.


Assuntos
Técnicas de Cultura de Células , Metabolômica , Humanos , Metabolômica/métodos , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA