Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS One ; 19(5): e0303496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739622

RESUMO

INTRODUCTION: Rheumatic heart disease (RHD), degenerative aortic stenosis (AS), and congenital valve diseases are prevalent in sub-Saharan Africa. Many knowledge gaps remain in understanding disease mechanisms, stratifying phenotypes, and prognostication. Therefore, we aimed to characterise patients through clinical profiling, imaging, histology, and molecular biomarkers to improve our understanding of the pathophysiology, diagnosis, and prognosis of RHD and AS. METHODS: In this cross-sectional, case-controlled study, we plan to recruit RHD and AS patients and compare them to matched controls. Living participants will undergo clinical assessment, echocardiography, CMR and blood sampling for circulatory biomarker analyses. Tissue samples will be obtained from patients undergoing valve replacement, while healthy tissues will be obtained from cadavers. Immunohistology, proteomics, metabolomics, and transcriptome analyses will be used to analyse circulatory- and tissue-specific biomarkers. Univariate and multivariate statistical analyses will be used for hypothesis testing and identification of important biomarkers. In summary, this study aims to delineate the pathophysiology of RHD and degenerative AS using multiparametric CMR imaging. In addition to discover novel biomarkers and explore the pathomechanisms associated with RHD and AS through high-throughput profiling of the tissue and blood proteome and metabolome and provide a proof of concept of the suitability of using cadaveric tissues as controls for cardiovascular disease studies.


Assuntos
Estenose da Valva Aórtica , Biomarcadores , Cardiopatia Reumática , Humanos , Cardiopatia Reumática/diagnóstico por imagem , Cardiopatia Reumática/fisiopatologia , Cardiopatia Reumática/metabolismo , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/fisiopatologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Masculino , Feminino , Metabolômica/métodos , Ecocardiografia/métodos , Proteômica/métodos , Imageamento por Ressonância Magnética/métodos , Multiômica
2.
Nat Commun ; 15(1): 2788, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555356

RESUMO

Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Camundongos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Monócitos , Anti-Infecciosos/farmacologia , Klebsiella pneumoniae , Pulmão
3.
J Proteome Res ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318665

RESUMO

Many metabolomic studies are interested in both polar and nonpolar analyses. However, the available sample volume often precludes multiple separate extractions. Therefore, there are major advantages in performing a biphasic extraction and retaining both phases for subsequent separate analyses. To be successful, such approaches require the method to be robust and repeatable for both phases. Hence, we determined the performance of three extraction protocols, plus two variant versions, using 25 µL of commercially available mouse plasma. The preferred option for nonpolar lipids was a modified diluted version of a method employing methyl tert-butyl ether (MTBE) suggested by Matyash and colleagues due to its high repeatability for nonpolar compounds. For polar compounds, the Bligh-Dyer method performs best for sensitivity but with consequentially poorer lipid performance. Overall, the scaled-down version of the MTBE method gave the best overall performance, with high sensitivity for both polar and nonpolar compounds and good repeatability for polar compounds in particular.

4.
Arthritis Rheumatol ; 76(1): 48-58, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471465

RESUMO

OBJECTIVE: Spondyloarthritis (SpA) is a group of immune-mediated diseases highly concomitant with nonmusculoskeletal inflammatory disorders, such as acute anterior uveitis (AAU) and Crohn's disease (CD). The gut microbiome represents a promising avenue to elucidate shared and distinct underlying pathophysiology. METHODS: We performed 16S ribosomal RNA sequencing on stool samples of 277 patients (72 CD, 103 AAU, and 102 SpA) included in the German Spondyloarthritis Inception Cohort and 62 back pain controls without any inflammatory disorder. Discriminatory statistical methods were used to disentangle microbial disease signals from one another and a wide range of potential confounders. Patients were naive to or had not received treatment with biological disease-modifying antirheumatic drugs (DMARDs) for >3 months before enrollment, providing a better approximation of a true baseline disease signal. RESULTS: We identified a shared, immune-mediated disease signal represented by low abundances of Lachnospiraceae taxa relative to controls, most notably Fusicatenibacter, which was most abundant in controls receiving nonsteroidal antiinflammatory drug monotherapy and implied to partially mediate higher serum C-reactive protein. Patients with SpA showed an enrichment of Collinsella, whereas human leukocyte antigen (HLA)-B27+ individuals displayed enriched Faecalibacterium. CD patients had higher abundances of a Ruminococcus taxon, and previous conventional/synthetic DMARD therapy was associated with increased Akkermansia. CONCLUSION: Our work supports the existence of a common gut dysbiosis in SpA and related inflammatory pathologies. We reveal shared and disease-specific microbial associations and suggest potential mediators of disease activity. Validation studies are needed to clarify the role of Fusicatenibacter in gut-joint inflammation, and metagenomic resolution is needed to understand the relationship between Faecalibacterium commensals and HLA-B27.


Assuntos
Antirreumáticos , Doença de Crohn , Microbioma Gastrointestinal , Espondilartrite , Uveíte Anterior , Humanos , Doença de Crohn/tratamento farmacológico , Doença de Crohn/complicações , Microbioma Gastrointestinal/genética , Espondilartrite/tratamento farmacológico , Espondilartrite/complicações , Uveíte Anterior/tratamento farmacológico , Clostridiales/metabolismo , Antígeno HLA-B27/genética , Doença Aguda
5.
Cardiovasc Res ; 119(18): 2902-2916, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37842925

RESUMO

AIMS: Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS: This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS: Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.


Assuntos
Cardiomiopatias , Coração , Animais , Feminino , Masculino , Camundongos , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Miocárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Caracteres Sexuais
6.
Anal Chem ; 95(51): 18645-18654, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055671

RESUMO

Untargeted metabolomics is an analytical approach with numerous applications serving as an effective metabolic phenotyping platform to characterize small molecules within a biological system. Data quality can be challenging to evaluate and demonstrate in metabolomics experiments. This has driven the use of pooled quality control (QC) samples for monitoring and, if necessary, correcting for analytical variance introduced during sample preparation and data acquisition stages. Described herein is a scoping literature review detailing the use of pooled QC samples in published untargeted liquid chromatography-mass spectrometry (LC-MS) based metabolomics studies. A literature query was performed, the list of papers was filtered, and suitable articles were randomly sampled. In total, 109 papers were each reviewed by at least five reviewers, answering predefined questions surrounding the use of pooled quality control samples. The results of the review indicate that use of pooled QC samples has been relatively widely adopted by the metabolomics community and that it is used at a similar frequency across biological taxa and sample types in both small- and large-scale studies. However, while many studies generated and analyzed pooled QC samples, relatively few reported the use of pooled QC samples to improve data quality. This demonstrates a clear opportunity for the field to more frequently utilize pooled QC samples for quality reporting, feature filtering, analytical drift correction, and metabolite annotation. Additionally, our survey approach enabled us to assess the ambiguity in the reporting of the methods used to describe the generation and use of pooled QC samples. This analysis indicates that many details of the QC framework are missing or unclear, limiting the reader's ability to determine which QC steps have been taken. Collectively, these results capture the current state of pooled QC sample usage and highlight existing strengths and deficiencies as they are applied in untargeted LC-MS metabolomics.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Controle de Qualidade
8.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674708

RESUMO

Periods of low energy supply are challenging conditions for organisms and cells during fasting or famine. Although changes in nutrient levels in the blood are first sensed by endothelial cells, studies on their metabolic adaptations to diminished energy supply are lacking. We analyzed the dynamic metabolic activity of human umbilical vein endothelial cells (HUVECs) in basal conditions and after serum starvation. Metabolites of glycolysis, the tricarboxylic acid (TCA) cycle, and the glycerol pathway showed lower levels after serum starvation, whereas amino acids had increased levels. A metabolic flux analysis with 13C-glucose or 13C-glutamine labeling for different time points reached a plateau phase of incorporation after 30 h for 13C-glucose and after 8 h for 13C-glutamine under both experimental conditions. Notably, we observed a faster label incorporation for both 13C-glucose and 13C-glutamine after serum starvation. In the linear range of label incorporation after 3 h, we found a significantly faster incorporation of central carbon metabolites after serum starvation compared to the basal state. These findings may indicate that endothelial cells develop increased metabolic activity to cope with energy deficiency. Physiologically, it can be a prerequisite for endothelial cells to form new blood vessels under unfavorable conditions during the process of angiogenesis in vivo.


Assuntos
Glutamina , Inanição , Humanos , Glutamina/metabolismo , Aminoácidos/metabolismo , Glicólise , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo
9.
Cardiovasc Res ; 119(6): 1441-1452, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35904261

RESUMO

AIMS: Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS: 4-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/day) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory faecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSION: The microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN.


Assuntos
Microbioma Gastrointestinal , Hipertensão , Microbiota , Animais , Masculino , Camundongos , Inflamação , Camundongos Endogâmicos C57BL
10.
Metabolomics ; 18(10): 77, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181583

RESUMO

Single cell metabolomics is an emerging and rapidly developing field that complements developments in single cell analysis by genomics and proteomics. Major goals include mapping and quantifying the metabolome in sufficient detail to provide useful information about cellular function in highly heterogeneous systems such as tissue, ultimately with spatial resolution at the individual cell level. The chemical diversity and dynamic range of metabolites poses particular challenges for detection, identification and quantification. In this review we discuss both significant technical issues of measurement and interpretation, and progress toward addressing them, with recent examples from diverse biological systems. We provide a framework for further directions aimed at improving workflow and robustness so that such analyses may become commonly applied, especially in combination with metabolic imaging and single cell transcriptomics and proteomics.


Assuntos
Metaboloma , Metabolômica , Metabolômica/métodos , Proteômica , Fluxo de Trabalho
11.
Metabolomics ; 18(9): 70, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36029375

RESUMO

BACKGROUND: Demonstrating that the data produced in metabolic phenotyping investigations (metabolomics/metabonomics) is of good quality is increasingly seen as a key factor in gaining acceptance for the results of such studies. The use of established quality control (QC) protocols, including appropriate QC samples, is an important and evolving aspect of this process. However, inadequate or incorrect reporting of the QA/QC procedures followed in the study may lead to misinterpretation or overemphasis of the findings and prevent future metanalysis of the body of work. OBJECTIVE: The aim of this guidance is to provide researchers with a framework that encourages them to describe quality assessment and quality control procedures and outcomes in mass spectrometry and nuclear magnetic resonance spectroscopy-based methods in untargeted metabolomics, with a focus on reporting on QC samples in sufficient detail for them to be understood, trusted and replicated. There is no intent to be proscriptive with regard to analytical best practices; rather, guidance for reporting QA/QC procedures is suggested. A template that can be completed as studies progress to ensure that relevant data is collected, and further documents, are provided as on-line resources. KEY REPORTING PRACTICES: Multiple topics should be considered when reporting QA/QC protocols and outcomes for metabolic phenotyping data. Coverage should include the role(s), sources, types, preparation and uses of the QC materials and samples generally employed in the generation of metabolomic data. Details such as sample matrices and sample preparation, the use of test mixtures and system suitability tests, blanks and technique-specific factors are considered and methods for reporting are discussed, including the importance of reporting the acceptance criteria for the QCs. To this end, the reporting of the QC samples and results are considered at two levels of detail: "minimal" and "best reporting practice" levels.


Assuntos
Metabolômica , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Controle de Qualidade
12.
J Am Soc Nephrol ; 33(12): 2259-2275, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985814

RESUMO

BACKGROUND: CKD is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (with normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis [HD], or kidney transplantation) with a mean±SD age of 10.6±3.8 years. RESULTS: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from patients on HD activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classic to nonclassic and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in patients on HD. CONCLUSIONS: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the proinflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo , Fator de Necrose Tumoral alfa , Criança , Adolescente
13.
Sci Rep ; 12(1): 7933, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562573

RESUMO

The AbsoluteIDQ p400 HR kit is a commercial product for targeted metabolomics. While the kit has been validated for human plasma and serum, adherent cell lysates have not yet been evaluated. We have optimized the detection of polar and lipid metabolites in cell lysates using the kit to enable robust and repeatable analysis of the detected metabolites. Parameters optimized include total cell mass, loading volume and extraction solvent. We present a cell preparation and analytical method and report on the performance of the kit with regard to detectability of the targeted metabolites and their repeatability. The kit can be successfully used for a relative quantification analysis of cell lysates from adherent cells although validated only for human plasma and serum. Most metabolites are below the limit of the Biocrates' set quantification limits and we confirmed that this relative quantification can be used for further statistical analysis. Using this approach, up to 45% of the total metabolites in the kit can be detected with a reasonable analytical performance (lowest median RSD 9% and 13% for LC and FIA, respectively) dependent on the method used. We recommend using ethanol as the extraction solvent for cell lysates of osteosarcoma cell lines for the broadest metabolite coverage and 25 mg of cell mass with a loading volume of 20 µL per sample.


Assuntos
Técnicas de Cultura de Células , Metabolômica , Humanos , Metabolômica/métodos , Solventes
14.
Anal Chem ; 94(12): 4930-4937, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35290737

RESUMO

Available automated methods for peak detection in untargeted metabolomics suffer from poor precision. We present NeatMS, which uses machine learning based on a convoluted neural network to reduce the number and fraction of false peaks. NeatMS comes with a pre-trained model representing expert knowledge in the differentiation of true chemical signal from noise. Furthermore, it provides all necessary functions to easily train new models or improve existing ones by transfer learning. Thus, the tool improves peak curation and contributes to the robust and scalable analysis of large-scale experiments. We show how to integrate it into different liquid chromatography-mass spectrometry (LC-MS) analysis workflows, quantify its performance, and compare it to various other approaches. NeatMS software is available as open source on github under permissive MIT license and is also provided as easy-to-install PyPi and Bioconda packages.


Assuntos
Aprendizado Profundo , Cromatografia Líquida/métodos , Metabolômica/métodos , Software , Espectrometria de Massas em Tandem/métodos
15.
Talanta ; 242: 123298, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35193012

RESUMO

Recently, there has been growing interest in short-chain fatty acids (SCFA) and ketone bodies (KB) due to their potential use as biomarkers of health and disease. For instance, these diet-related metabolites can be used to monitor and reduce the risk of immune response, diabetes, or cardiovascular diseases. Given the interest in these metabolites, different targeted metabolomic methods based on UPLC-MS/MS have been developed in recent years to detect and quantify SCFA and KB. In this case study, we discovered that applying an existing validated, targeted UPLC-MS/MS method to mouse plasma, resulted in a fragment ion (194 m/z) being originally misidentified as acetic acid (a SCFA), when its original source was 3-hydroxybutyric acid (a KB). Therefore, we report a modified, optimized LC method that can separate both signals. In addition, the metabolite coverage was expanded in this method to detect up to eight SCFA: acetic, propanoic, butyric, isobutyric, 2-methylbutyric, valeric, isovaleric, and hexanoic acids, two KB: 3-hydroxybutyric, and acetoacetic acids, and one related metabolite: 3-hydroxy-3-methylbutyric acid. The optimization of this method increased the selectivity of the UPLC-MS/MS method towards the misidentified compound. These findings encourage the scientific community to increase efforts in validating the original precursor of small molecule fragments in targeted methods.


Assuntos
Ácidos Graxos Voláteis , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/métodos , Ácidos Graxos Voláteis/metabolismo , Corpos Cetônicos , Camundongos , Plasma , Espectrometria de Massas em Tandem/métodos
16.
Front Mol Biosci ; 9: 1042231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619172

RESUMO

Background: Assessing detailed metabolism in exercising persons minute-to-minute has not been possible. We developed a "drop-of-blood" platform to fulfill that need. Our study aimed not only to demonstrate the utility of our methodology, but also to give insights into unknown mechanisms and new directions. Methods: We developed a platform, based on gas chromatography and mass spectrometry, to assess metabolism from a blood-drop. We first observed a single volunteer who ran 13 km in 60 min. We particularly monitored relative perceived exertion (RPE). We observed that 2,3-bisphosphoglycerate peaked at RPE in this subject. We next expanded these findings to women and men volunteers who performed an RPE-based exercise protocol to RPE at Fi O 2 20.9% or Fi O 2 14.5% in random order. Results: At 6 km, our subject reached his maximum relative perceived exertion (RPE); however, he continued running, felt better, and finished his run. Lactate levels had stably increased by 2 km, ketoacids increased gradually until the run's end, while the hypoxia marker, 2,3 bisphosphoglycerate, peaked at maximum relative perceived exertion. In our normal volunteers, the changes in lactate, pyruvate, ß hydroxybutyrate and a hydroxybutyrate were not identical, but similar to our model proband runner. Conclusion: Glucose availability was not the limiting factor, as glucose availability increased towards exercise end in highly exerted subjects. Instead, the tricarboxylic acid→oxphos pathway, lactate clearance, and thus and the oxidative capacity appeared to be the defining elements in confronting maximal exertion. These ideas must be tested further in more definitive studies. Our preliminary work suggests that our single-drop methodology could be of great utility in studying exercise physiology.

17.
Metabolites ; 11(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34940646

RESUMO

Using manual derivatization in gas chromatography-mass spectrometry samples have varying equilibration times before analysis which increases technical variability and limits the number of potential samples analyzed. By contrast, automated derivatization methods can derivatize and inject each sample in an identical manner. We present a fully automated (on-line) derivatization method used for targeted analysis of different matrices. We describe method optimization and compare results from using off-line and on-line derivatization protocols, including the robustness and reproducibility of the methods. Our final parameters for the derivatization process were 20 µL of methoxyamine (MeOx) in pyridine for 60 min at 30 °C followed by 80 µL N-Methyl-N-trimethylsilyltrifluoracetamide (MSTFA) for 30 min at 30 °C combined with 4 h of equilibration time. The repeatability test in plasma and liver revealed a median relative standard deviation (RSD) of 16% and 10%, respectively. Serum samples showed a consistent intra-batch median RSD of 20% with an inter-batch variability of 27% across three batches. The direct comparison of on-line versus off-line demonstrated that on-line was fit for purpose and improves repeatability with a measured median RSD of 11% compared to 17% using the same method off-line. In summary, we recommend that optimized on-line methods may improve results for metabolomics and should be used where available.

18.
Commun Biol ; 4(1): 1324, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819611

RESUMO

The gut microbiome produces vitamins, nutrients, and neurotransmitters, and helps to modulate the host immune system-and also plays a major role in the metabolism of many exogenous compounds, including drugs and chemical toxicants. However, the extent to which specific microbial species or communities modulate hazard upon exposure to chemicals remains largely opaque. Focusing on the effects of collateral dietary exposure to the widely used herbicide atrazine, we applied integrated omics and phenotypic screening to assess the role of the gut microbiome in modulating host resilience in Drosophila melanogaster. Transcriptional and metabolic responses to these compounds are sex-specific and depend strongly on the presence of the commensal microbiome. Sequencing the genomes of all abundant microbes in the fly gut revealed an enzymatic pathway responsible for atrazine detoxification unique to Acetobacter tropicalis. We find that Acetobacter tropicalis alone, in gnotobiotic animals, is sufficient to rescue increased atrazine toxicity to wild-type, conventionally reared levels. This work points toward the derivation of biotic strategies to improve host resilience to environmental chemical exposures, and illustrates the power of integrative omics to identify pathways responsible for adverse health outcomes.


Assuntos
Atrazina/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Inseticidas/toxicidade , Acetobacter/genética , Acetobacter/metabolismo , Animais , Drosophila melanogaster/microbiologia , Feminino , Inativação Metabólica , Masculino
19.
Metabolites ; 11(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34564437

RESUMO

Lipids represent a valuable target for metabolomic studies since altered lipid metabolism is known to drive the pathological changes in cardiovascular disease (CVD). Metabolomic technologies give us the ability to measure thousands of metabolites providing us with a metabolic fingerprint of individual patients. Metabolomic studies in humans have supported previous findings into the pathomechanisms of CVD, namely atherosclerosis, apoptosis, inflammation, oxidative stress, and insulin resistance. The most widely studied classes of lipid metabolite biomarkers in CVD are phospholipids, sphingolipids/ceramides, glycolipids, cholesterol esters, fatty acids, and acylcarnitines. Technological advancements have enabled novel strategies to discover individual biomarkers or panels that may aid in the diagnosis and prognosis of CVD, with sphingolipids/ceramides as the most promising class of biomarkers thus far. In this review, application of metabolomic profiling for biomarker discovery to aid in the diagnosis and prognosis of CVD as well as metabolic abnormalities in CVD will be discussed with particular emphasis on lipid metabolites.

20.
J Pediatr ; 229: 175-181.e1, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33039387

RESUMO

OBJECTIVE: To validate our previously identified candidate metabolites, and to assess the ability of these metabolites to predict hypoxic-ischemic encephalopathy (HIE) both individually and combined with clinical data. STUDY DESIGN: Term neonates with signs of perinatal asphyxia, with and without HIE, and matched controls were recruited prospectively at birth from 2 large maternity units. Umbilical cord blood was collected for later batch metabolomic analysis by mass spectroscopy along with clinical details. The optimum selection of clinical and metabolites features with the ability to predict the development of HIE was determined using logistic regression modelling and machine learning techniques. Outcome of HIE was determined by clinical Sarnat grading and confirmed by electroencephalogram grade at 24 hours. RESULTS: Fifteen of 27 candidate metabolites showed significant alteration in infants with perinatal asphyxia or HIE when compared with matched controls. Metabolomic data predicted the development of HIE with an area under the curve of 0.67 (95% CI, 0.62-0.71). Lactic acid and alanine were the primary metabolite predictors for the development of HIE, and when combined with clinical data, gave an area under the curve of 0.96 (95% CI, 0.92-0.95). CONCLUSIONS: By combining clinical and metabolic data, accurate identification of infants who will develop HIE is possible shortly after birth, allowing early initiation of therapeutic hypothermia.


Assuntos
Sangue Fetal/metabolismo , Hipóxia-Isquemia Encefálica/diagnóstico , Alanina/sangue , Índice de Apgar , Asfixia Neonatal/complicações , Biomarcadores/sangue , Estudos de Casos e Controles , Eletroencefalografia , Humanos , Recém-Nascido , Ácido Láctico/sangue , Modelos Logísticos , Aprendizado de Máquina , Metabolômica , Valor Preditivo dos Testes , Estudos Prospectivos , Ressuscitação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA