Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(8): 5321-5332, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39144040

RESUMO

Background: Minimally invasive glaucoma surgery (MIGS) has become an important treatment approach for primary open angle glaucoma. Restoration of aqueous humour drainage by means of alloplastic implants represents a promising treatment option and is itself subject of methodological development. An adequate positioning in the targeted tissue regions is essential is important for the performance of our in-house developed Rostock glaucoma microstent (RGM). The aim of this study was to evaluate the applicability of two animal models and human donor eyes regarding RGM placement. Methods: Eyes were obtained from rabbits, pigs, and human body donations. After orbital exenterations, RGMs were placed in the anterior chamber draining in the subconjunctival space. X-ray contrast was increased by incubation in aqueous iodine solution for subsequent detailed micro-computed tomography (micro-CT)-based visualization and analysis. Results: In contrast to the human and porcine eyes, the stent extended far to the posterior pole with a more pronounced curvature along the globe in the rabbit eyes due to their smaller size. However, dysfunctional deformations were not depicted. Adequate positioning of the stent's inflow area in the anterior chamber and the outflow area in the Tenon space was achieved in both the animal models and the human eye. Conclusions: Micro-CT has proven to be a valuable tool for postoperative ex vivo evaluation of glaucoma drainage devices in its entire complexity. With regard to morphology, the porcine eye is the ideal animal model to test implantation procedures of the RGM. Nevertheless, rabbit eye morphology facilitates successful implantation results and provides all prerequisites for preclinical animal studies.

2.
Front Bioeng Biotechnol ; 12: 1367366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737540

RESUMO

Introduction: The biocompatibility of an implanted material strongly determines the subsequent host immune response. After insertion into the body, each medical device causes tissue reactions. How intense and long-lasting these are is defined by the material properties. The so-called foreign body reaction is a reaction leading to the inflammation and wound healing process after implantation. The constantly expanding field of implant technology and the growing areas of application make optimization and adaptation of the materials used inevitable. Methods: In this study, modified liquid silicone rubber (LSR) and two of the most commonly used thermoplastic polyurethanes (TPU) were compared in terms of induced inflammatory response in the body. We evaluated the production of inflammatory cytokines, infiltration of inflammatory cells and encapsulation of foreign bodies in a subcutaneous air-pouch model in mice. In this model, the material is applied in a minimally invasive procedure via a cannula and in one piece, which allows material testing without destroying or crushing the material and thus studying an intact implant surface. The study design includes short-term (6 h) and long-term (10 days) analysis of the host response to the implanted materials. Air-pouch-infiltrating cells were determined by flow cytometry after 6 h and 10 days. Inflammation, fibrosis and angiogenesis markers were analyzed in the capsular tissue by qPCR after 10 days. Results: The foreign body reaction was investigated by macroscopic evaluation and scanning electron microscopy (SEM). Increased leukocyte infiltration was observed in the air-pouch after 6 h, but it markedly diminished after 10 days. After 10 days, capsule formations were observed around the materials without visible inflammatory cells. Discussion: For biocompatibility testing materials are often implanted in muscle tissue. These test methods are not sufficiently conclusive, especially for materials that are intended to come into contact with blood. Our study primarily shows that the presented model is a highly adaptable and minimally invasive test system to test the inflammatory potential of and foreign body reaction to candidate materials and offers more precise analysis options by means of flow cytometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA