Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Artif Organs ; 25(4): 343-349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35301606

RESUMO

In acute kidney injury caused by sepsis (septic AKI), excessive production of inflammatory mediators is believed to be involved in deterioration of the disease. Renal replacement therapy using a polymethyl methacrylate (PMMA) membrane hemofilter improves the pathological condition of septic AKI by adsorbing and removing inflammatory cytokines. However, the adsorption properties of the PMMA membrane are unclear. In this study, we comprehensively analyzed the adsorption of 48 different cytokines in human plasma to PMMA and polysulfone (PS) membranes. Seventy-nine percent (38/48) of the cytokines were adsorbed more efficiently to the PMMA membrane than the PS membrane, which indicates that the PMMA membrane has high cytokine adsorption ability. The adsorption rate tended to be higher for the cytokines with lower molecular weight, and there was a significant correlation between the molecular weight of the cytokines and the adsorption rates. Electron microscopy showed that the PMMA hollow fiber membrane had a uniform internal structure from the inner to the outer layers of the membrane and had nano-pores inside the membrane that may have contributed to the adsorption of proteins with a specific molecular weight range. The clinical efficacy of a PMMA membrane hemofilter with cytokine adsorption properties against septic AKI needs further investigation including the evaluation of filtration performance of the hemofilters.


Assuntos
Injúria Renal Aguda , Hemodiafiltração , Humanos , Polimetil Metacrilato/química , Citocinas , Adsorção , Membranas Artificiais
2.
Vox Sang ; 117(1): 49-57, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34082471

RESUMO

BACKGROUND AND OBJECTIVES: Platelet concentrates suspended in a platelet additive solution (PAS-PC) are associated with a reduction in allergic response and are suitable for preparing pathogen-inactivated PC. We aimed to develop an efficient platform for the dual preparation of PAS-PC and platelet-poor plasma. MATERIALS AND METHODS: PAS-PC was prepared in six steps by using a hollow-fibre system based on cross-flow filtration: priming, loading PC, loading PAS, collection of filtered liquid (flow-through) and collection of platelets by washing with PAS followed by washing with air. In this study, the efficacy of platelet and plasma protein recovery and characteristics of recovered PAS-PC and flow-through plasma were analysed in detail. RESULTS: Recoveries of platelet in PAS-PC and plasma protein in the flow-through were 95.4% ± 3.7% and 61.6% ± 5.0%, respectively. The residual plasma protein in PAS-PC was 34.1% ± 2.8%. Although the expression level of CD62P, a platelet activation marker, in recovered platelets was approximately 1.2-fold of that in original platelets, swirling patterns were well retained, and aggregation in PAS-PC was not visible. Agonist-induced aggregabilities, platelet morphology and hypotonic shock recovery were conserved. The patterns of plasma protein and lipoprotein in the flow-through were comparable with those in the original PCs. The multimeric pattern analysis of VWF remained unaltered. CONCLUSION: We propose a highly efficient preparation system that enables the simultaneous production of PAS-PC and platelet-poor plasma. It also achieves a high recovery of functionally well-retained platelets with very low activation.


Assuntos
Preservação de Sangue , Ativação Plaquetária , Plaquetas , Humanos , Pressão Osmótica , Plasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA